• 拓撲學」。首先創造譯名者,可能是姜立夫,也可能是陳省身。陳省身在《算六十年》回憶文章中說:「姜[立夫]先生1946年去美,创所工作便落在我的身上。我着重于“训练新人”。最初一批研究人员,大多是大学新毕业的学生。我每周讲12小时的课,授“拓扑学”(译名即是那时起的)。」 拓撲學...
    30 KB (4,312 words) - 16:01, 28 April 2025
  • D} 是覆盖 C {\displaystyle C} 的精細。 所有子覆盖也是精細,反之不然。但是注意一般的说精細将比原始覆盖有更多的集合。 覆盖的这个词语经常用来定义与紧致性有关的性质。一个空间 X 被称为 紧致的,如果所有开覆盖有有限子覆盖。 林德勒夫的,如果所有开覆盖都有可数子覆盖。...
    3 KB (623 words) - 18:23, 8 December 2023
  • 覆盖可以指: 覆盖 (拓扑学) 覆盖 (图论) 覆盖空间 覆盖 (编程) 覆盖 (旗帜)...
    168 bytes (17 words) - 07:34, 12 September 2021
  • 空间(英語:Topological space)是一种賦予「一點附近」這個概念的抽象数学结构;空间也是一个集合,其元素称为点,由此可以定義出如收敛、连通、连续等概念。空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。空间有独立研究的价值,研究空间的数学分支称为拓扑学。...
    33 KB (5,985 words) - 18:20, 6 October 2024
  • 代数(英語:Algebraic topology)是使用抽象代数的工具来研究空间的数学分支。其基本目标是通过寻找空间的具有代数结构的不变量,从而将空间分类(英语:Classification theorem)。 尽管代数拓扑学主要通过代数研究问题,但有时也可以使用拓扑学...
    8 KB (1,319 words) - 11:17, 25 November 2023
  • 拓扑学這個數學領域裡,一致空间(uniform space)是指带有一致结构的集合。一致空间是一個撲空間,有可以用来定义如完备性、一致连续及一致收敛等一致性質的附加结构。 一致结构和结构之间的概念区别在於,一致空间可以形式化有关于相对邻近性及点间临近性等特定概念。换句话说,「x 邻近于a 胜过y...
    16 KB (3,023 words) - 02:14, 25 February 2023
  • 這裡列出的是在數學領域中的一分支拓撲學所常使用的一些術語。在拓撲學的許多子類中,術語上的使用差異並不是很大,這裡主要針對一般拓撲學(或稱點集撲)來編寫。這些術語也是其它門如代數、微分和幾何中的基本術語。 關於一些基本的定義,請參閱空間的條目,關於拓撲學的簡史,請參閱拓撲學...
    39 KB (5,979 words) - 23:52, 2 June 2025
  • 拓扑学的相关领域中,撲基(英語:base 或 basis) 是某種特殊集合族,它們的任意并集構成了一個空間的開集。基在拓扑学的作用是簡化證明,許多撲的性質可轉換成基的性質,像是撲意義下的连续就可以直接對基來做定義。 撲基的動機是想定義一群特殊的子集,它們的任意并集都是「开」的;嚴謹來說,令...
    21 KB (1,728 words) - 04:18, 7 January 2025
  • 流形 (category 微分拓扑学)
    在数学中,流形(英語:manifold)是可以“局部欧几里得空间化”的一个空间,即在此空间中,每个点附近“局部类似于欧氏空间”。更精确地说,n维流形(n-manifold),简称n流形,是一个空间,其性质是每个点都有一个邻域,该邻域同胚于n维欧氏空间的一个开集。...
    34 KB (5,796 words) - 15:27, 21 April 2025
  • 数学中,伽罗瓦理论是源于弗拉基米尔·阿诺德对阿贝尔-鲁菲尼定理的拓扑学证明的理论,关注拓扑学概念应用在伽罗瓦理论发生的一些问题。这种理论将抽象代数中的许多思想同拓扑学思想联系起来。正如Askold Khovanskii的书中所说:“根据这个理论,解析函数的黎曼曲面覆盖...
    2 KB (192 words) - 00:44, 30 August 2024
  • 拓扑学和相关的数学分支中,豪斯多夫空间、分离空间或T2空间(Hausdorff space, separated space or T2 space)是其中的点都“由邻域分离”的空间。在众多可施加在空间上的分离公理中,“豪斯多夫条件”是最常使用和讨论的。它蕴涵了序列、网和滤子的极限的唯一...
    10 KB (1,915 words) - 18:56, 21 June 2025
  • 电路是电子电路的组件互连网络所呈现的形式。组件的不同具体数值或额定值被视作相同的并不关注电路中组件的物理布局,也不关注它们在電路圖上的位置;类似于数学拓扑学概念,它只关注组件之间的连接关系。众多物理布局和电路图可能都构成相同的。 严格来说,将组件替换为完全不同类型的组件仍属于相同的...
    32 KB (5,218 words) - 02:16, 11 May 2025
  • 紧空间 (category 空间性质)
    也不是(它不是闭合的)。 廣義的定義是如果對於一个撲空間的所有开覆盖,都可以找到有限的子覆盖,則稱此撲空間是紧致的。 根據海涅-博雷尔定理,欧几里得空间的子集緊緻當且僅當它「閉集且有界」。 注意:某些作者如布尔巴基使用术语“预紧致”,并把“紧致”保留给是豪斯多夫空间并且“预紧致”的...
    9 KB (1,616 words) - 23:55, 31 July 2024
  • 范畴论中,格罗滕迪克是范畴C上的一种结构,它使C中对象的表现如空间的开集一样。范畴连同格罗滕迪克的选择,统称为景(site)。 格罗滕迪克将开覆盖的概念公理化。利用格罗滕迪克提供的覆盖,就可定义范畴上的层及其上同调。亚历山大·格罗滕迪克首先运用代数几何与代数数论定义了概形的平展上...
    24 KB (4,922 words) - 16:47, 4 February 2024
  • 坐标邻域 (category 微分拓扑学)
    A}U_{\alpha }} 时, { ( U α , φ α ) } α ∈ A {\displaystyle \left\{(U_{\alpha },\varphi _{\alpha })\right\}_{\alpha \in A}} 被称为是图册 (拓扑学)。 局部坐标 空间 坐标转换 流形...
    966 bytes (156 words) - 01:31, 25 December 2021
  • 合混淆。单纯复形的纯粹的组合对应是一个抽象的单纯复形。 组合采用拓扑学中组合的概念,并在20世纪初期并入到代数的领域。 在1978年,当洛瓦茲·拉茲洛证明Kneser猜想的时候,用代数解决组合数学问题的方法的情况逆转,因而开始组合新的研究。洛瓦茲在博苏克-乌拉姆定理使用了这个理论且...
    13 KB (1,712 words) - 16:51, 25 December 2023
  • 文表面,再在湿宣纸上贴上一层干宣纸以吸取多余水分,将四角四边固定,用毛刷敲捶宣纸,使湿宣纸紧贴所平面,随后除去干宣纸。待湿宣纸稍干后再用子蘸取适量的墨汁,轻轻扑打湿宣纸以复制刻画的图文。等宣纸、墨汁在碑器上晒干或风干,移去四角固定,最后将宣纸取下。 传主要有、擦两种,此外还有的蝉翼...
    5 KB (706 words) - 08:04, 15 October 2023
  • 潮池 连岛沙洲——沙洲類型 时间地理 时区——地球上的的一系列区域 地理第二定律 收费公路 沙洲——地形 地形 地形图 地图——地圖學名詞,一種經簡化及調整只保留重要資訊的地圖 拓扑学 地名——專有名詞分支,地名的研究 小径 迁徙——維基媒體消歧義頁 三角测量 支流——流入主干河或湖泊的溪流或河...
    16 KB (2,482 words) - 02:24, 29 June 2025
  • 量子计算机(topological quantum computer)。这种计算机使用准粒子作为线程,使用辫理论来设计稳定的逻辑门。 文小刚发现了分數量子霍爾效應自然地给出非阿贝尔任意子。 阿列克谢·基塔耶夫表示了我们可以用非阿贝尔任意子来创造量子计算机。 拓扑学和量子场论: 随机矩阵...
    11 KB (1,468 words) - 15:15, 6 March 2025
  • 單連通 (category 代数)
    單連通是拓撲學撲空間的一種性質。直觀地說,單連通空間中所有閉曲線都能連續地收縮至一點。此性質可以由空間的基本群刻劃。空间的基本群是一个空间是否为单连通的标志:当且仅当空间的基本群是當然群时,道路连通的空间是单连通的。 考慮道路連通的撲空間X。若撲空間X 中的任意閉曲線皆同倫等價於一個點,則稱該空間為單連通的。...
    9 KB (1,425 words) - 08:42, 14 January 2024
  • 图论 (section 覆盖问题)
    但此方法由于过于复杂,在当时未被广泛接受。 1860年之1930年间,若当、库拉托夫斯基和惠特尼从之前独立于图论发展的拓扑学中吸取大量内容进入图论,而现代代数方法的使用更让图论与走上共同发展的道路。其中应用代数较早者如物理学家基尔霍夫于1845年发表的基尔霍夫电路定律。 图论中概率方法的引入,尤其是埃尔德什和Alfréd...
    14 KB (1,960 words) - 02:33, 7 June 2025
  • 离散空间 (redirect from 离散)
    拓扑学和相关数学领域中,离散空间指一种特别简单的空间或相似的结构,在其中点都在特定意义下是相互孤立的。 离散是可以在集合上给出的最精细的。离散中的每个子集都是开集,因此每个单子集也都是开集。 给定集合X: 在X上的离散是通过X的所有子集是开集(因此也是闭集)而定义的。如果X配...
    12 KB (2,180 words) - 14:17, 18 October 2024
  • 让·勒雷 (category 拓扑学家)
    月10日),法国数学家,工作领域为偏微分方程与代数。 他出生于南特。1926年至1929年求于高等师范学校。1933年获得哲学博士学位。从1938年到1939年他是南锡大学的教授。他虽没有加入布尔巴基小组,但与其创立者们关系密切。 他在拓扑学的主要工作于1940年至1945年在奥地利埃德巴赫...
    4 KB (383 words) - 18:19, 17 May 2021
  • 在数学领域拓扑学中,一致性质或一致不变性是一致空间的在一致同构下不变的性质。 因为出现的一致空间是空间而一致同构是同胚,所有一致空间的所有性质都是一致性质。本文关心不是性质的一致性质。 分离。一致空间X是分离的,如果所有周围的交集等于X×X中的对角。这实际上就是性质,并等价于底层...
    3 KB (361 words) - 11:31, 8 July 2021
  • 映射度 (category 代数)
    拓扑学中,两个同维数流形之间的连续映射的度数(degree)非正式地说是一个点被盖住的次数。一个映射的度数可用同调群,或(对光滑映射)正则值的原像定义。它是卷绕数的一个推广。例如,考虑复平面上映射 zn,视为 S2 到自身的映射,具有度数 n,它将球面绕自身缠了 n 圈。 在物理...
    5 KB (879 words) - 06:37, 20 August 2022
  • 格罗滕迪克在研究韦伊猜想时,提出了一种新拓扑学,即格罗滕迪克。(通常意味的)空间公理化了“邻近性”概念:当且仅当两点位于许多相同的开集中时,才称它们邻近。格罗滕迪克公理化了“覆盖”概念:空间的覆盖是指共同包含环境空间所有信息的子空间集合。层是用覆盖定义的,所以格罗滕迪克也可看作层论的公理化。 格罗滕迪克的拓扑学...
    49 KB (8,330 words) - 13:01, 7 April 2024
  • 覆疊空間 (redirect from 覆盖空间)
    拓撲學中,撲空間 X {\displaystyle X} 的覆疊空間是一對資料 ( Y , p ) {\displaystyle (Y,p)} ,其中 Y {\displaystyle Y} 是撲空間, p : Y → X {\displaystyle p:Y\to X} 是連續的滿射,並存在...
    4 KB (854 words) - 13:52, 16 September 2021
  • 紧生成空间 (category 点集拓扑学)
    拓扑学中,紧生成空间(又称k-空间)是一种空间、其为所有紧致子空间族的凝聚。具体而言,我们称空间X 为紧生成空间,当它满足: 子空间A 是X 中的闭集当且仅当对所有紧子集K ⊆X,A ∩K 是K 中的闭集。 等价地,我们也可以将以上条件中的“闭集”替换成“开集”。实际上,只要X 的...
    7 KB (1,076 words) - 13:40, 25 March 2022
  • 地理信息系统 (category 地理)
    以进一步处理来标识感兴趣的对象和类例如土地覆盖的光栅数据。 除了收集和输入空间数据之外,属性数据也要输入到GIS中。对于向量数据,这包括关于表现在系统中的对象的附加信息。 输入数据到GIS中后,通常还要编辑,来消除错误,或进一步处理。对于向量数据必须要“正确”才能进行一些高级分析。比如说,在公路...
    26 KB (4,462 words) - 18:57, 27 July 2024
  • 這樣得到的撲空間稱為Sorgenfrey直線(得名自 Robert Sorgenfrey(英语:Robert Sorgenfrey))或箭頭,有時記為 R l {\displaystyle \mathbb {R} _{l}} . 與康托集和長直線類似,Sorgenfrey 直線也經常作為點集拓撲學中不少似是而非的命題的反例。...
    5 KB (773 words) - 04:52, 8 May 2021
  • 排序的图一定没有环,因为环中的一条边必定从排序较后的顶点指向比其排序更前的顶点。基于此,排序可以被用来定义有向无环图:当且仅当一个有向图有排序,它是有向无环图。一般情况下,排序并非唯一。有向无环图仅仅在存在一条路径可以包含其所有顶点的情况下,有唯一的排序方式,这时,排序与它们在这条路径中出现的顺序相同。...
    39 KB (5,137 words) - 11:28, 21 November 2024