In lambda calculus, the Church–Rosser theorem states that, when applying reduction rules to terms, the ordering in which the reductions are chosen does...
7 KB (1,039 words) - 09:14, 27 May 2025
known for his part in the Church–Rosser theorem in lambda calculus. He also developed what is now called the "Rosser sieve" in number theory. He was part...
5 KB (392 words) - 17:32, 14 May 2025
of mathematical logic, Introduction to Mathematical Logic. The Church–Rosser theorem The lambda calculus emerged in his 1936 paper showing the unsolvability...
24 KB (2,245 words) - 02:40, 27 February 2025
form of a term, if one exists, is unique (as a corollary of the Church–Rosser theorem). However, a term may have more than one head normal form. In the...
7 KB (1,125 words) - 19:54, 17 April 2025
Confluence (abstract rewriting) (redirect from Church-Rosser property)
calculus has this property is also known as the Church–Rosser theorem.) In a rewriting system with the Church–Rosser property the word problem may be reduced...
16 KB (1,744 words) - 16:42, 2 July 2025
application of the reduction steps eventually terminates, then by the Church–Rosser theorem it will produce a β-normal form. Variable names are not needed if...
90 KB (12,117 words) - 02:29, 15 June 2025
Lambda calculus Church-Rosser theorem Calculus of constructions Combinatory logic Post correspondence problem Kleene's recursion theorem Recursively enumerable...
14 KB (1,012 words) - 00:08, 16 November 2024
Cantor–Bernstein–Schröder theorem (set theory, cardinal numbers) Cantor's theorem (set theory, Cantor's diagonal argument) Church–Rosser theorem (lambda calculus)...
78 KB (6,292 words) - 23:25, 29 June 2025
gave a series of lectures on his theorems at Princeton in 1933–1934 to an audience that included Church, Kleene, and Rosser. By this time, Gödel had grasped...
92 KB (12,173 words) - 02:29, 24 June 2025
Referential transparency Currying Lambda abstraction Church–Rosser theorem Extensionality Church numeral Fixed point combinator SKI combinator calculus...
3 KB (205 words) - 20:20, 20 February 2025
Physics. Springer Verlag. Rosser, J. B. (1939). "An Informal Exposition of Proofs of Godel's Theorem and Church's Theorem". The Journal of Symbolic Logic...
58 KB (6,849 words) - 00:41, 20 June 2025
Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem" (PDF). Indagationes Mathematicae. 34: 381–392. ISSN 0019-3577....
13 KB (1,596 words) - 14:07, 26 June 2025
sometimes called weak confluence. Theorem. For an ARS the following three conditions are equivalent: (i) it has the Church–Rosser property, (ii) it is confluent...
15 KB (2,000 words) - 08:38, 8 June 2025
Entscheidungsproblem (redirect from Church's Theorem)
algorithm was proven to be impossible by Alonzo Church and Alan Turing in 1936. By the completeness theorem of first-order logic, a statement is universally...
19 KB (2,642 words) - 21:03, 19 June 2025
tool for automatic formula manipulation, with application to the Church-Rosser theorem." Indagationes Mathematicae (Proceedings). Vol. 75. No. 5. North-Holland...
8 KB (708 words) - 21:20, 30 March 2025
University Press. ISBN 9780521779203. Ohlebusch, Enno (1998). "Church-Rosser theorems for abstract reduction modulo an equivalence relation". Rewriting...
9 KB (1,284 words) - 17:36, 18 February 2025
In mathematical logic, Rosser's trick is a method for proving a variant of Gödel's incompleteness theorems not relying on the assumption that the theory...
9 KB (1,591 words) - 05:16, 28 May 2025
Boyer–Moore theorem prover to prove metatheorems such as the tautology theorem, Godel's incompleteness theorem and the Church-Rosser theorem. He has contributed...
3 KB (211 words) - 23:26, 5 October 2021
Sahlqvist formula (redirect from Sahlqvist correspondence theorem)
Rxz_{0}\rightarrow \exists z_{1}(Rx_{1}z_{1}\land Rz_{0}z_{1})]} , and it is the Church–Rosser property. ◻ ◊ p → ◊ ◻ p {\displaystyle \Box \Diamond p\rightarrow \Diamond...
5 KB (876 words) - 08:16, 11 September 2024
full-time. Rosser was well known for his research in pure mathematics, logic (Rosser's trick, the Kleene–Rosser paradox, and the Church–Rosser theorem) and...
28 KB (2,609 words) - 01:41, 6 June 2025
on Church's thesis". Notre Dame Journal of Formal Logic. 28 (4): 490–498. Oct 1987. doi:10.1305/ndjfl/1093637645. Kleene–Brouwer order Kleene–Rosser paradox...
15 KB (1,356 words) - 17:08, 26 June 2025
Halting problem (redirect from Turing's halting theorem)
115 Lucas 2021. Kleene 1952, p. 382. Rosser, "Informal Exposition of Proofs of Gödel's Theorem and Church's Theorem", reprinted in Davis 1965, p. 223 letter...
53 KB (7,350 words) - 09:57, 12 June 2025
music critic, complications from surgery. J. Barkley Rosser, 81, American logician (Church–Rosser theorem), aneurysm. Jessie Mae Brown Beavers, 66, American...
48 KB (4,142 words) - 17:52, 23 June 2025
(Sep., 1936), pp. 103–105. Rosser. J. B., 1939, An informal exposition of proofs of Gödel's Theorem and Church's Theorem, The Journal of Symbolic Logic...
61 KB (8,298 words) - 16:15, 11 April 2025
needed] and in lambda calculus as a manner of reduction having the Church–Rosser property. An amalgam can be formally defined as a 5-tuple (A,f,B,g,C)...
7 KB (817 words) - 20:15, 9 June 2024
Alonzo Church (a system which had the lambda calculus as a consistent subsystem) and Curry's own system. However, unlike Church, Kleene, and Rosser, Curry...
14 KB (1,365 words) - 10:09, 17 November 2024
to prove the incompleteness theorems. The main results established are Gödel's first and second incompleteness theorems, which have had an enormous impact...
11 KB (1,354 words) - 17:17, 16 October 2023
Reference. Retrieved 2022-06-12. Aaronson, Scott (21 July 2011). "Rosser's Theorem via Turing machines". Shtetl-Optimized. Retrieved 2 November 2022....
14 KB (1,924 words) - 22:07, 19 June 2025
In mathematics, an impossibility theorem is a theorem that demonstrates a problem or general set of problems cannot be solved. These are also known as...
29 KB (3,915 words) - 00:22, 27 June 2025
It is predicative, all well-typed terms are strongly normalizing and Church-Rosser and the property of being well-typed is decidable. However, type inference...
7 KB (965 words) - 21:53, 4 November 2023