• Thumbnail for Central limit theorem
    Central limit theorem (category CS1 German-language sources (de))
    normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed...
    67 KB (9,161 words) - 10:33, 20 December 2024
  • {\displaystyle (2)} below, subgaussian random variables can be characterized as those random variables with finite subgaussian norm. If there exists some...
    29 KB (5,505 words) - 16:44, 18 October 2024
  • Thumbnail for Nicolas Bouleau
    Cf. N. Bouleau, F. Hirsch, Formes de Dirichlet générales et densité des variables aléatoires réelles sur l'espace de Wiener, Journal of Functional Analysis...
    8 KB (823 words) - 09:52, 30 October 2024
  • (1936). [Reference given in Dover book] P. Levy, Théorie de l'addition des variables aléatoires, Paris, 1937, p. 320. Ergodic Theory with Applications to...
    5 KB (899 words) - 17:41, 18 November 2024
  • statistics. The maximum of a sample of iid random variables after proper renormalization can only converge in distribution to one of only 3 possible distribution...
    13 KB (2,176 words) - 21:58, 7 December 2024
  • Thumbnail for Stable distribution
    independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable...
    46 KB (6,795 words) - 18:11, 7 December 2024
  • 1951. Sur la convergence presque complète des moyennes de variables aléatoires, 273 pages, Paris, Institut de statistique de l'université de Paris, 1957...
    6 KB (485 words) - 12:36, 29 July 2024
  • des variables aléatoires les plus indépendantes" [Search for the most independent random variables], Comptes rendus hebdomadaires des séances de l'Académie...
    15 KB (1,176 words) - 19:40, 4 September 2024
  • {1}{\sqrt {n}}}G_{n}} converges in distribution to a random real tree, which we call a Brownian tree. Here, the limit used is the convergence in distribution...
    8 KB (1,243 words) - 15:14, 1 December 2023
  • Jacques Drèze (category CS1 German-language sources (de))
    Boiteux, M (1951). "La tarification au coût marginal et les demandes aléatoires". Cahiers du Séminaire d'Économétrie. 1 (1): 56–69. doi:10.2307/20075348...
    51 KB (5,838 words) - 07:54, 13 September 2024