• 积分学中,椭圆积分最初出现于椭圆的弧长有关的问题中。朱利奥·法尼亚诺(英语:Guilio Fagnano)和欧拉是最早的研究者。现代数学将椭圆积分定义为可以表达为如下形式的任何函数 f {\displaystyle f\,} 的积分 f ( x ) = ∫ c x R [ t , P ( t ) ]...
    23 KB (6,920 words) - 09:35, 22 March 2024
  • m\leq 1} 。 剩下的九種橢圓函數能由這三種構造。 雅可比椭圆函数的反函数可以像三角函数与反三角函数那样被定义。因为椭圆函数往往是椭圆积分之逆,这些反函数也都可以用勒让德椭圆积分来描述。如同反三角函数一样,雅可比椭圆函数的反函数也是多值的,因此需要支割线。以下是部分反函数的积分表达: a r c s n...
    9 KB (1,902 words) - 05:39, 29 July 2022
  • 在数学中,椭圆是平面上到两个相異固定点的距离之和为常数的点之轨迹。 根據該定義,可以用手繪橢圓:先準備一條線,將這條線的兩端各綁在固定的點上(這兩個點就當作是橢圓的兩個焦點,且距離小於線長);取一支筆,用筆尖将線繃緊,這時候兩個點和筆就形成一個三角形(的兩邊);然後左右移動筆尖拉住線開始作圖,持續地使線繃緊,最後就可以完成一個橢圓圖形。...
    13 KB (3,141 words) - 13:23, 16 May 2024
  • 在複分析中,橢圓函數是複平面上的雙週期亞純函數。歷史上,橢圓函數起初被視作橢圓積分之逆。 更明確地說,固定 C {\displaystyle \mathbb {C} } 中的格 Λ := Z a ⊕ Z b ⊂ C {\displaystyle \Lambda :=\mathbb {Z} a\oplus...
    4 KB (682 words) - 16:13, 26 September 2021
  • 黎曼积分 达布积分 勒贝格积分 黎曼-斯蒂爾吉斯积分 數值積分 一种确定的实数值 本条目中主要介绍定积分,不定积分的介绍参见不定积分条目,无说明的情况下,下文中的“积分”一词均指“定积分”。 比如说,路径积分是多元函数的积分积分区间不再是一条线段,而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。...
    34 KB (6,981 words) - 10:40, 22 October 2024
  • 在数学中,线积分(英語:Line integral)是积分的一种。积分函数的取值沿的不是区间,而是被称为积分路径的特定曲线。 在曲线积分中,被积的函数可以是标量函数或向量函数。當被積函數是純量函數時,积分的值是積分路径各点上的函数值乘上該點切向量的長度,在被积分函数是向量函数时,積分值是積分...
    9 KB (1,724 words) - 10:57, 29 April 2024
  • 廣義積分,又称为反常积分、异常积分(英語:Improper integral ),是对普通定积分的推廣。 广义积分可以分成兩類,第一類又稱為無窮積分,指積分區間的上限或下限為無窮的積分。第二類稱為瑕積分,指被積函數在積分區間中含有不連續點的積分。 第一類反常積分是無窮積分,指積分區間的上限或下限中含有無窮...
    8 KB (1,776 words) - 09:01, 9 November 2023
  • n元函数f(x1, x2,…, xn)在定义域D上的多重积分通常用嵌套的积分号按照演算的逆序标识(最左边的积分号最后计算),后面跟着被积函数和正常次序的积分变量(最右边的变量最后使用)。积分域或者对每个积分变量在每个积分号下标识,或者用一个变量标在最右边的积分号下: ∫ … ∫ D f ( x 1 , x 2...
    30 KB (6,978 words) - 07:23, 10 May 2024
  • 数学上,曲面积分,也称为面积分(英語:Surface integral),是在曲面上的定积分(曲面可以是空间中的弯曲子集);它可以视为和线积分相似的双重积分。给定一个曲面,可以在上面对标量场(也就是實数值的函数)进行积分,也可以对向量场(也就是向量值的函数)积分。 面积分在物理中有大量应用,特别是在电磁学的經典物理學中。...
    8 KB (1,627 words) - 05:03, 19 June 2023
  • space,即其坐标为模的空间)上的某种微分形式(或者张量密度),因为这些形式通常有一个權重。 在椭圆曲线的情况,有一个模,所以模空间是代数曲线。这是在雅可比的椭圆函数理论中称为k的一个量,他将椭圆积分归约为如下形式 ( 1 − x 2 ) ( 1 − k 2 x 2 ) . {\displaystyle...
    829 bytes (127 words) - 08:56, 29 May 2022
  • 在实分析中,由黎曼创立的黎曼积分(英語:Riemann integral)首次对函数在给定区间上的积分给出了一个精确定义。黎曼积分在技术上的某些不足之处可由后来的黎曼-斯蒂尔杰斯积分和勒贝格积分得到修补。 讓函數 f {\displaystyle f} 為定義在區間 [ a , b ] {\displaystyle...
    12 KB (2,834 words) - 10:34, 26 October 2024
  • 由于列表比较长,积分表被分为以下几个部分: 有理函数积分表 无理函数积分表 指数函数积分表 对数函数积分表 高斯函数积分表 三角函数积分表 反三角函数积分表 双曲函数积分表 反双曲函数积分表 ∫   ( a x + b ) n d x = ( a x + b ) n + 1 a ( n + 1 ) +...
    11 KB (3,928 words) - 02:22, 15 November 2024
  • 积分方程是含有对未知函数的积分运算的方程,与微分方程相对。许多数学物理问题需通过积分方程或微分方程求解。 积分方程最基本的形式为第一类弗里德霍姆方程: f ( x ) = ∫ a b K ( x , t ) ϕ ( t ) d t , {\displaystyle f(x)=\int _{a}^{b}K(x...
    2 KB (361 words) - 00:57, 16 September 2020
  • 分部積分法又稱作部分積分法(英語:Integration by parts),是一種積分的技巧。它是由微分的乘法定則和微積分基本定理推導而來的。其基本思路是将不易求得结果的积分形式,转化为等价的但易于求出结果的积分形式。 假設 h ( x )   {\displaystyle h(x)\ } 與 k...
    8 KB (1,957 words) - 04:49, 4 April 2023
  • 在数值分析中,數值積分(英語:Numerical integration)是计算定積分数值的方法和理论。在数学分析中,给定函数的定積分的计算不总是可行的。许多定积分不能用已知的積分公式得到精确值。数值积分是利用黎曼积分等数学定义,用数值逼近的方法近似计算给定的定积分值。借助于电子计算设备,数值积分可以快速而有效地计算复杂的积分。...
    6 KB (1,408 words) - 04:26, 25 October 2024
  • 力学,取得了许多成果,导致了一系列重要理论的诞生。勒让德是椭圆积分理论奠基人之一。勒让德对数论的主要贡献是二次互反律,这是同余式论中的一条基本定理。他还是解析数论的先驱者之一,归纳出了素数分布,促使许多数学家研究这个问题。其他贡献包括:椭圆函数论、最小二乘法、测地线理论等。 1796年,猜想素数分布的規律,即後來的素数定理。...
    5 KB (448 words) - 03:24, 29 May 2024
  • 在实分析或数学分析中,达布积分(英語:Darboux integral)是一种定义一个函数的积分的方法,它是通过达布和构造的。达布积分和黎曼积分是等价的,也就是说,一个实值函数是达布可积的当且仅当它是黎曼可积的,并且积分的值相等。达布积分的定义比黎曼积分简单,并且更具操作性。达布积分的名字来自于数学家让·加斯东·达布。...
    10 KB (2,564 words) - 00:07, 3 July 2024
  • 部分分式积分法,即通过将原函数拆分为部分分式来简化积分步骤,是计算积分时的一个常用技巧。任何有理函数都可拆分为多个多项式和部分分式的和,每个部分分式中的分子次数小于分母,然后根据积分表及利用其他积分技巧,将每个部分分式积分,就得到原函数的积分。 以下是一个简单的例子。计算 ∫ 10 x 2 + 12...
    2 KB (624 words) - 03:57, 20 September 2020
  • 分割函数 对数积分函数 指数积分函数 互补指数积分函数 三角积分函数 正弦积分函数 余弦积分函数 双曲正弦积分函数 双曲余弦积分函数 误差函数 菲涅耳积分 道森积分 Γ函数 双Γ函数,多Γ函数 不完全Γ函数 巴尼斯G函数 Β函数 不完全Β函数 K函数 多变量Γ函数 学生t-分布 椭圆积分 勒让德形式...
    5 KB (688 words) - 16:18, 18 September 2023
  • 趣的性质:其每一点上的曲率的绝对值与此点到原点的距离成正比关系。 在历史上,对伯努利双纽线之弧长的计算导致了十八世纪时对椭圆积分的研究。1800年左右,高斯开始对椭圆积分的逆:椭圆函数进行研究。他的大部分成果并没有在当时发表,只是零散地出现在《算术研究》的脚注中。 Booth双纽线(英语:Lemniscate...
    3 KB (508 words) - 06:57, 11 October 2021
  • 在數學中,魏爾斯特拉斯橢圓函數(Weierstrass's elliptic functions)又稱 p 函數並且以 ℘ {\displaystyle \wp } 符號表示,是格外簡單的一類橢圓函數,也是雅可比橢圓函數的特殊形式。卡爾·魏爾斯特拉斯首先研究了這些函數。 固定 C {\displaystyle...
    5 KB (1,147 words) - 15:36, 31 July 2022
  • 勒貝格積分(英語:Lebesgue integral)是现代数学中的一个积分概念,它将积分运算扩展到任何测度空间中。在最简单的情况下,对一个非负值的函数的积分可以看作是函数图像与 x {\displaystyle x} 轴之间的面积。勒贝格积分则将积分运算扩展到更廣的函数(可測函數),并且也扩展了可以进行积分运算的集合(可測空間)。...
    21 KB (4,694 words) - 09:05, 16 December 2024
  • 降次积分法是求高次函数积分的一种技巧。先用换元积分法、三角换元法、分部积分法、部分分式積分法等方法求出降次公式,将原函数(如In)用低次的函数形式(如In-2)表示。然后将n代成想求的数,逐步降次,直至降至0或1为止,借助积分表得出结果。 如在求 ∫ cos 5 ⁡ ( x ) d x {\displaystyle...
    3 KB (868 words) - 14:51, 30 April 2024
  • 积分符号内取微分(英語:Leibniz integral rule,莱布尼茨积分法则)是一个在数学的微积分领域中很有用的运算。它是说,给定如下积分 F ( x , a ( x ) , b ( x ) ) = ∫ a ( x ) b ( x ) f ( x , t ) d t {\displaystyle...
    10 KB (2,117 words) - 06:14, 9 December 2022
  • 积分因子(英語:integrating factor)是一种用来解微分方程的方法。 考虑以下形式的微分方程: y ′ + a ( x ) y = b ( x ) . . . . . . ( 1 ) {\displaystyle y'+a(x)y=b(x)......(1)} 其中 y = y ( x...
    3 KB (755 words) - 13:57, 21 October 2024
  • 换元积分法,又稱變數變換法(英語:Integration by substitution),是求积分的一种方法,由链式法则和微积分基本定理推导而来。 设 f ( x )   {\displaystyle f(x)\ } 为可积函数, g = g ( x )   {\displaystyle g=g(x)\...
    3 KB (687 words) - 20:10, 4 December 2024
  • 辛普森法則(英語:Simpson's rule)是一種數值積分方法,是牛顿-柯特斯公式的特殊形式,以五次曲線逼近的方式取代矩形或梯形積分公式,以求得定積分的數值近似解。其近似值如下: ∫ a b f ( x ) d x ≈ b − a 6 [ f ( a ) + 4 f ( a + b 2 ) + f...
    2 KB (434 words) - 04:27, 25 October 2024
  • 第八章 原函数(不定积分) §1 不定积分与它的计算的最简单方法 §2 有理式的积分 §3 某些含有根式的函数的积分 §4 含有三角函数与指数函数的表达式的积分 §5 椭圆积分 第九章 定积分 §1 定积分的定义与存在条件 §2 定积分的一些性质 §3 定积分的计算与变换 §4 定积分的一些应用 §5 积分的近似计算...
    7 KB (1,082 words) - 06:33, 4 June 2023
  • 积分的概念,建立了任意阶导数的理论。 1832年和1873年,刘维尔先后向巴黎科学院提交两篇论文,对代数函数和超越函数进行了分类,作为对阿贝尔和拉普拉斯等人关于椭圆积分的表示和有理函数的理论的整理,并给出了初等函数的分类。初等函数的积分...
    9 KB (1,265 words) - 06:22, 12 December 2024
  • K代表模数为k的完全椭圆积分,K'代表模数为 k ′ = 1 − k 2 {\displaystyle k'={\sqrt {1-k^{2}}}} 的完全椭圆积分。 其中 k,v 都是实数,并且 0 < k < 1 {\displaystyle 0<k<1} , 代数形式 作雅可比橢圓函數变数替换 s...
    4 KB (1,112 words) - 19:23, 28 April 2017
  • 求表达式的微分很简单,很容易构建算法;求积分则困难得多。许多相对简单的表达式的积分无法表示为解析解。参见不定积分与非初等积分。 有一种称为Risch算法的程序,能确定初等函数(由有限多指数、对数、常数、方根通过有限次复合、4种初等运算组成)的积分是否初等,如果是,则可以返回待求积分...
    7 KB (1,011 words) - 01:15, 11 October 2023