• The Artin reciprocity law, which was established by Emil Artin in a series of papers (1924; 1927; 1930), is a general theorem in number theory that forms...
    16 KB (2,326 words) - 06:37, 14 April 2025
  • the reciprocity laws as saying that a product over p of Hilbert norm residue symbols (a,b/p), taking values in roots of unity, is equal to 1. Artin reformulated...
    13 KB (1,830 words) - 13:11, 25 May 2025
  • Thumbnail for Quadratic reciprocity
    algebraic geometry, culminating in Artin reciprocity, class field theory, and the Langlands program. Quadratic reciprocity arises from certain subtle factorization...
    111 KB (8,566 words) - 23:50, 16 June 2025
  • statements of the Artin reciprocity law is that this results in a canonical isomorphism. Neukirch 1999, p. 134, Sec. 5. Artin & Whaples 1945. Artin & Whaples...
    8 KB (1,054 words) - 10:24, 23 April 2025
  • point of the program was Emil Artin's reciprocity law, which generalizes quadratic reciprocity. The Artin reciprocity law applies to a Galois extension...
    21 KB (2,327 words) - 12:38, 4 July 2025
  • prime ideals p {\displaystyle {\mathfrak {p}}} of these factors. As Artin reciprocity shows, when G is an abelian group these L-functions have a second...
    13 KB (2,047 words) - 00:34, 13 June 2025
  • class group of F. This statement was generalized to the so called Artin reciprocity law; in the idelic language, writing CF for the idele class group...
    16 KB (2,203 words) - 02:36, 11 May 2025
  • Emil Artin, a mathematician. Ankeny–Artin–Chowla congruence Artin algebra Artin billiards Artin braid group Artin character Artin conductor Artin's conjecture...
    1 KB (96 words) - 00:52, 4 September 2024
  • quite a deep one, in the sense that it motivates some of the ideas of Artin reciprocity. Suppose that p is an odd prime. The action takes place inside the...
    22 KB (3,993 words) - 09:44, 15 June 2025
  • of reals or p-adic numbers. It is related to reciprocity laws, and can be defined in terms of the Artin symbol of local class field theory. The Hilbert...
    11 KB (1,645 words) - 03:54, 4 May 2025
  • Thumbnail for Algebraic number theory
    mostly proved by 1930, after work by Teiji Takagi. Emil Artin established the Artin reciprocity law in a series of papers (1924; 1927; 1930). This law...
    40 KB (5,798 words) - 10:21, 25 April 2025
  • titled Basic Galois Theory. His ideas were used by Emil Artin to prove the Artin reciprocity law. He worked with his student Anatoly Dorodnov on a generalization...
    4 KB (324 words) - 21:26, 8 April 2025
  • solvable Artin reciprocity law, a general theorem in number theory that provided a partial solution to Hilbert's ninth problem Reciprocity relation or...
    5 KB (635 words) - 21:54, 20 January 2025
  • simplest of the higher reciprocity laws, and is a consequence of several later and stronger reciprocity laws such as the Artin reciprocity law. It was introduced...
    9 KB (1,578 words) - 01:51, 24 April 2025
  • Reciprocity theorem may refer to: Quadratic reciprocity, a theorem about modular arithmetic Cubic reciprocity Quartic reciprocity Artin reciprocity Weil...
    1 KB (142 words) - 00:36, 13 June 2025
  • {b}{3}}=\omega ^{n}.} Quadratic reciprocity Quartic reciprocity Octic reciprocity Eisenstein reciprocity Artin reciprocity Euler, Tractatus ..., §§ 407–410...
    26 KB (4,061 words) - 14:25, 26 March 2024
  • allows one to describe the Artin reciprocity law, which is a generalisation of quadratic reciprocity, and other reciprocity laws over finite fields. In...
    87 KB (18,442 words) - 03:48, 28 June 2025
  • vector spaces. Artin's study of these representations led him to formulate the Artin reciprocity law and conjecture what is now called the Artin conjecture...
    15 KB (1,927 words) - 19:44, 5 August 2024
  • ^{*}}{\lambda }}{\Bigg ]}.} Quadratic reciprocity Cubic reciprocity Octic reciprocity Eisenstein reciprocity Artin reciprocity A.^ Here, "rational" means laws...
    30 KB (4,817 words) - 08:05, 9 May 2024
  • homomorphisms of abelian extensions of algebraic number fields by applying Artin's reciprocity maps to ideal class groups and analyzing the resulting homomorphisms...
    125 KB (28,815 words) - 09:20, 9 December 2023
  • of a prime. The problem was partially solved by Emil Artin by establishing the Artin reciprocity law which deals with abelian extensions of algebraic...
    3 KB (251 words) - 16:41, 7 August 2023
  • certain finite invariants, mapping from the idele class group under the Artin reciprocity law. Herein, the analytical structure of its L-function allows for...
    13 KB (1,652 words) - 04:27, 18 May 2025
  • theorem Hilbert class field Takagi existence theorem Hasse norm theorem Artin reciprocity Local class field theory Iwasawa theory Herbrand–Ribet theorem Vandiver's...
    2 KB (187 words) - 23:15, 29 June 2024
  • symbol may refer to: The local Artin symbol in Artin reciprocity The local symbol used to formulate Weil reciprocity A Steinberg symbol on a local field...
    212 bytes (61 words) - 06:38, 29 December 2019
  • translated from number theory to group theory by Emil Artin in 1929, who made use of his general reciprocity law to establish the reformulation. Since this long...
    48 KB (9,028 words) - 10:59, 14 August 2023
  • In mathematics, the Weil reciprocity law is a result of André Weil holding in the function field K(C) of an algebraic curve C over an algebraically closed...
    4 KB (489 words) - 11:40, 6 May 2022
  • {cD-dC}{q}}\right)_{2}\ .} Artin reciprocity Eisenstein reciprocity Lemmermeyer, Franz (2000), Reciprocity laws. From Euler to Eisenstein, Springer...
    2 KB (235 words) - 22:23, 21 August 2022
  • Archimedes. Artin reciprocity law is a general theorem in number theory that forms a central part of global class field theory. Named after Emil Artin. Ashby's...
    79 KB (10,530 words) - 12:35, 7 June 2025
  • "symbols" used in algebraic number theory, such as the Hilbert symbol and the Artin symbol. Legendre's original definition was by means of the explicit formula...
    43 KB (2,417 words) - 15:45, 26 June 2025
  • Chebotarev's density theorem, and used shortly afterwards by Artin to prove his reciprocity theorem. For general layers E,F there is an exact sequence 0...
    18 KB (2,674 words) - 08:12, 9 January 2025