• Dattatreya Ramchandra Kaprekar (Marathi: दत्तात्रेय रामचंद्र कापरेकर; 17 January 1905 – 1986) was an Indian recreational mathematician who described several...
    10 KB (1,115 words) - 02:13, 11 November 2024
  • In number theory, Kaprekar's routine is an iterative algorithm named after its inventor, Indian mathematician D. R. Kaprekar. Each iteration starts with...
    9 KB (2,032 words) - 23:51, 24 September 2024
  • example, in base 10, 45 is a 2-Kaprekar number, because 45² = 2025, and 20 + 25 = 45. The numbers are named after D. R. Kaprekar. Let n {\displaystyle n} be...
    17 KB (4,058 words) - 18:03, 4 May 2024
  • 6174 (redirect from Kaprekar constant)
    The number 6174 is known as Kaprekar's constant after the Indian mathematician D. R. Kaprekar. This number is renowned for the following rule: Take any...
    5 KB (608 words) - 13:45, 5 November 2024
  • These numbers were first described in 1949 by the Indian mathematician D. R. Kaprekar. Let n {\displaystyle n} be a natural number. We define the b {\displaystyle...
    4 KB (581 words) - 18:18, 31 July 2024
  • Edwin Hubble Josephson constant – Brian David Josephson Kaprekar's constant – D. R. Kaprekar Kerr constant – John Kerr Khinchin's constant – Aleksandr...
    5 KB (500 words) - 23:13, 7 October 2024
  • as n-harshad (or n-Niven) numbers. Harshad numbers were defined by D. R. Kaprekar, a mathematician from India. The word "harshad" comes from the Sanskrit...
    18 KB (2,608 words) - 16:46, 6 November 2024
  • Science, 1300-1800. Ákos Császár discovers the Császár polyhedron. D. R. Kaprekar discovers the convergence property of the number 6174. The use of lithium...
    9 KB (841 words) - 17:04, 16 June 2024
  • Gunjikar, K. R.; Kaprekar, D. R. (1939), "Theory of Demlo numbers" (PDF), Journal of the University of Bombay, VIII (3): 3–9 Kaprekar, D. R. (1938a), "On...
    27 KB (3,414 words) - 15:25, 21 October 2024
  • Hungarian dermatologist – Kaposi's sarcoma D. R. Kaprekar, Indian mathematician – Kaprekar constant, Kaprekar number Jacobus Kapteyn, Dutch astronomer –...
    117 KB (11,145 words) - 15:55, 10 November 2024
  • amateur mathematicians: List of recreational number theory topics Kulkarni, D. Enjoying Math: Learning Problem Solving With KenKen Puzzles Archived 2013-08-01...
    11 KB (986 words) - 12:16, 10 November 2024
  • these cubes as nasik as a respect to the great Indian Mathematician D R Kaprekar who hails from Deolali in Nasik District in Maharashtra, India. In 1905...
    29 KB (4,008 words) - 13:37, 27 May 2024
  • politician and sports administrator D. R. Kaprekar (1905–1986) — mathematician, discovered Kaprekar's constant and the Kaprekar number Sonali Kulkarni (born...
    34 KB (3,630 words) - 22:57, 4 November 2024
  • Rochester who works in Number Theory D. R. Kaprekar – Mathematician who worked on Number Theory. He is known for Kaprekar constant Narendra Karmarkar – Mathematician...
    30 KB (2,670 words) - 15:19, 26 August 2024
  • Thumbnail for 1949
    the People's Republic of China. The Malta Labour Party is founded. D. R. Kaprekar discovers the convergence property of the number 6174. Slavery in Kuwait...
    91 KB (9,090 words) - 19:55, 16 November 2024
  • Artillery (d. 1981) January 17 D. R. Kaprekar, Indian recreational mathematician (d. 1986) Saeb Salam, 4-time prime minister of Lebanon (d. 2000) Guillermo...
    89 KB (9,712 words) - 21:53, 10 August 2024
  • Bapudeva Sastri Damodar Dharmananda Kosambi Chandrashekhar Khare D. R. Kaprekar Dinesh Thakur Kapil Hari Paranjape M. N. Vartak Narendra Karmarkar Rahul...
    64 KB (5,301 words) - 08:25, 18 November 2024
  • considered by Damodar Dharmananda Kosambi. Kaprekar Constants: Numbers 495 and 6174. The Indian mathematician D.R.Kaprekar discovered the number 6174 is reached...
    197 KB (22,221 words) - 09:53, 13 November 2024
  • Thumbnail for January 1905
    of Jesuits. Born: D. R. Kaprekar, Indian recreational mathematician; in Dahanu, Bombay province, British India (d. 1986) "Kaprekar numbers", where the...
    23 KB (2,883 words) - 15:57, 13 October 2024
  • connected components. country calling code for Uzbekistan 999 = 33 × 37, Kaprekar number, Harshad number In some parts of the world, such as the UK and Commonwealth...
    29 KB (3,815 words) - 19:47, 12 November 2024
  • Thumbnail for Stirling numbers of the second kind
    these numbers satisfy S d ( n , k ) = S ( n − d + 1 , k − d + 1 ) , n ≥ k ≥ d {\displaystyle S^{d}(n,k)=S(n-d+1,k-d+1),n\geq k\geq d} (hence the name "reduced")...
    24 KB (4,048 words) - 16:44, 7 November 2024
  • Thumbnail for Fibonacci sequence
    generalization: F n 2 − F n + r F n − r = ( − 1 ) n − r F r 2 {\displaystyle {F_{n}}^{2}-F_{n+r}F_{n-r}=(-1)^{n-r}{F_{r}}^{2}} F m F n + 1 − F m + 1 F...
    86 KB (13,054 words) - 01:55, 13 November 2024
  • Thumbnail for Composite number
    Boston: Allyn and Bacon, LCCN 68-15225 Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory, Englewood Cliffs: Prentice Hall, LCCN 77-81766...
    6 KB (848 words) - 19:03, 9 November 2024
  • the original (PDF) on 2016-05-09, retrieved 2009-03-02. Bloch, R. M.; Campbell, R. V. D.; Ellis, M. (1948), "The Logical Design of the Raytheon Computer"...
    6 KB (881 words) - 17:07, 27 February 2024
  • Thumbnail for Exponentiation
    {\displaystyle f(x,y)=x^{y}} defined on D = { ( x , y ) ∈ R 2 : x > 0 } {\displaystyle D=\{(x,y)\in \mathbf {R} ^{2}:x>0\}} . Then D can be viewed as a subset of...
    103 KB (13,437 words) - 01:55, 18 November 2024
  • Thumbnail for Cube (algebra)
    +(a+dn-d)^{3}} is given by F ( d , a , n ) = ( n / 4 ) ( 2 a − d + d n ) ( 2 a 2 − 2 a d + 2 a d n − d 2 n + d 2 n 2 ) {\displaystyle F(d,a,n)=(n/4)(2a-d...
    24 KB (3,006 words) - 05:25, 7 September 2024
  • Thumbnail for Natural number
    numbers q and r such that a = b q + r  and  r < b . {\displaystyle a=bq+r{\text{ and }}r<b.} The number q is called the quotient and r is called the remainder...
    53 KB (5,873 words) - 05:29, 18 November 2024
  • Thumbnail for Superior highly composite number
    k > 1 we have d ( n ) n ε ≥ d ( k ) k ε {\displaystyle {\frac {d(n)}{n^{\varepsilon }}}\geq {\frac {d(k)}{k^{\varepsilon }}}} where d(n), the divisor...
    8 KB (982 words) - 19:28, 24 May 2024
  • Thumbnail for Power of 10
    root Sum-product Coding-related Meertens Other Dudeney Factorion Kaprekar Kaprekar's constant Keith Lychrel Narcissistic Perfect digit-to-digit invariant...
    15 KB (629 words) - 15:08, 5 November 2024
  • Thumbnail for Lah number
    d d x e 1 x = − 1 x 2 ⋅ e 1 x {\displaystyle {\frac {\textrm {d}}{{\textrm {d}}x}}e^{\frac {1}{x}}=-{\frac {1}{x^{2}}}\cdot e^{\frac {1}{x}}} d 2 d x...
    11 KB (1,812 words) - 15:40, 30 October 2024