• 微分代数(英語:Differential algebra)是代数学的一个分支,在代数中装备一个导子就可以得到微分代数。此外,在数学中,微分微分域和微分代数是、域、代数装备一个导子,一个满足莱布尼兹乘积法则的一元函数。微分域的一个自然例子是复数域上的单变元有理函数 C(t),其导子是关于 t 的微分。...
    6 KB (1,163 words) - 21:00, 3 July 2025
  • 在数学中,微分算子(英語:Differential operator)是定义为微分运算之函数的算子。首先在记号上,将微分考虑为一个抽象运算是有帮助的,它接受一个函数得到另一个函数。 最常用的微分算子是取导数自身。这个算子的常用记号包括: d d x {\displaystyle {\mathrm {d}...
    8 KB (1,627 words) - 12:53, 4 July 2025
  • 微分对策可以按照收益分类為零和微分对策與非零和微分对策;或者按照随机因素的存在与否分类为决定性微分对策與随机微分对策;抑或是按照微分对策的解法可以分为开纳什均衡(open loop Nash equilibrium)、闭纳什均衡(closed loop Nash...
    2 KB (231 words) - 23:31, 30 November 2024
  • PID控制器(比例-积分-微分控制器),由比例单元(Proportional)、积分单元(Integral)和微分单元(Derivative)组成。可以透過調整這三個單元的增益 K p {\displaystyle K_{p}} , K i {\displaystyle K_{i}} 和 K d {\displaystyle...
    45 KB (7,020 words) - 14:42, 25 January 2025
  • 德拉姆上同调 (category 微分几何)
    cohomology)是同时属于代数拓扑和微分拓扑的工具。它能够以一种特别适合计算和用具体的上同调类的方式表达关于光滑流形的基本拓扑信息。它是基于有特定属性的微分形式的存在性的上同调理论。它以不同的确定的意义对偶于奇异同调,以及亚历山大-斯潘尼尔上同调。 任何光滑流形M上的光滑微分k-形式在加法之下形成一个交换群(实际上也是一个实向量空间,称为...
    7 KB (1,292 words) - 03:30, 24 June 2023
  • 在数学中,集合M上的一个n-维微分结构(differential structure)或可微结构(differentiable structure)是一个带有附加结构(使得我们可以在该流形上做微积分)的拓扑流形,使其成为一个n-维微分流形。如果M已经是一个拓扑流形,我们要求新拓扑与原来已有的拓扑相同。...
    7 KB (1,169 words) - 19:23, 7 June 2023
  • 嵌入 (数学) (category 微分拓撲學)
    域論上,從一個域E到另一個域F中的一個嵌入,是一個同態σ: E → F。因為同態的核是一個理想,而域的理想只有0及整個域本身,又σ(1)=1,故其核不能為整個域,即知核為0。因此這個同態必定是單態射,而E和在F中的σ(E)同構。所以可稱兩個域之間的任何同態為嵌入。...
    5 KB (990 words) - 16:06, 26 September 2021
  • 斯托克斯定理 (category 微分几何)
    theorem)、旋度定理(Curl Theorem)、开尔文-斯托克斯定理(Kelvin-Stokes theorem),是微分几何中关于微分形式的积分的定理,因為維數跟空間的不同而有不同的表現形式,它的一般形式包含了向量分析的几个定理,以乔治·加布里埃尔·斯托克斯爵士命名。 设 S...
    10 KB (1,203 words) - 12:10, 29 April 2024
  • 导数 (redirect from 微分)
    4=2.8} 。 微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。可微的函数,其微分等于导数乘以自变量的微分 d x {\displaystyle \mathrm {d} x} ,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数...
    50 KB (9,807 words) - 15:37, 3 July 2025
  • 1,0,0,0,\ldots } 。 三維面的貝蒂數依次為 1 , 3 , 3 , 1 , 0 , 0 , 0 , … {\displaystyle 1,3,3,1,0,0,0,\ldots } 。 一般而言, n {\displaystyle n} 維面的貝蒂數由二項式係數給出,此命題可透過下節敘述的性質證明。...
    4 KB (790 words) - 03:32, 26 December 2024
  • 在抽象代數中,多項式推廣了初等數學中的多項式。一個 R {\displaystyle R} 上的多項式是由係數在 R {\displaystyle R} 中的多項式構成的,其中的代數運算由多項式的乘法與加法定義。在範疇論的語言中,當 R {\displaystyle R} 為交換時,多項式可以被刻劃為交換...
    6 KB (1,347 words) - 23:06, 17 May 2024
  • 阿蒂亞-辛格指標定理 (category 微分幾何)
    是緊定向微分流形, V → X {\displaystyle V\to X} 是向量叢,其加法與乘法分別由不交并與積導出;我們考慮此對關係 ( ∂ X , V | ∂ X ) ∼ 0 {\displaystyle (\partial X,V|_{\partial X})\sim 0} 的商...
    22 KB (3,467 words) - 15:54, 25 April 2024
  • 安培路定律(英語:Ampère's circuital law)常直接簡稱為“安培定律”,是由安德烈-馬里·安培於1826年提出的一條靜磁學基本定律。 安培路定律表明了:在真空中載流導線所載有的穩恆電流,與磁感应强度沿著環繞導線的任意閉合迴路(路,closed loop)的路徑積分(場積),兩者之間的關係為...
    19 KB (2,774 words) - 14:57, 3 July 2025
  • 数学学科分类标准采用分级的分类方案, 具有三个等级. 分类的第一级由一个两位数表示, 第二级由一个字母表示, 第三级由另外的两位数表示. 例如: 53 代表微分几何 53A 代表经典微分几何 53A45 代表向量和张量分析 一個有效的分類可以有兩個、三個或五個字元,視乎使用了多少級分類。 63个顶级数学学科由唯一的两位数字标识...
    6 KB (889 words) - 13:28, 4 July 2025
  • {\displaystyle R_{\mathfrak {p}}} 是局部。 非交換的局部化較困難,並非對所有積性子集 S {\displaystyle S} 都有局部化。充分條件之一是歐爾條件,請參閱條目歐爾定理。 其應用之一是用於微分算子。例如它可以解釋作為一個微分算子 D {\displaystyle D} 抽象地添加逆算子...
    9 KB (1,926 words) - 00:33, 16 November 2021
  • {\displaystyle \mathbb {R} ^{n}} 」的拓樸空間,是微分幾何的主要研究對象。所有其他類型的流形( manifolds )都是帶有額結構的拓撲流形。例如可微流形是一個帶有額外的「微分結構」的拓撲流形;而光滑流形則要求這個「微分結構」要是無窮可微的。 一個 n {\displaystyle n}...
    3 KB (392 words) - 06:20, 16 April 2024
  • 拓扑)。 并非每个流形上都可以有阿诺索夫微分同胚;例如,球面上就没有这样的微分同胚。容许有阿诺索夫微分同胚的最简单的紧流形是面:上面有所谓的线性阿诺索夫微分同胚,这是没有模1特征值的同构。可以证明面上其他的阿诺索夫微分同胚都与这种同胚拓扑共轭。 对容许有阿诺索夫微分同胚的流形进行分类是非常困难的问题,截至2012年仍然没有解决。...
    7 KB (1,496 words) - 04:07, 13 February 2022
  • 微分幾何中,黎曼幾何(英語:Riemannian geometry)研究具有黎曼度量的光滑流形,即流形切空間上二次形式的選擇。它特別關注于角度、弧線長度及體積。把每个微小部分加起來而得出整體的數量。 19世紀,波恩哈德·黎曼把這個概念加以推广。 任意平滑流形容許黎曼度量及這個額外結構幫助解決微分...
    5 KB (852 words) - 21:11, 9 January 2025
  • 导子 (category 微分代数)
    {D(ab)=D(a)b+(-1)^{|a|}aD(b)}} ,它们称为反导子。 反导子的例子包含作用在微分形式上的外导数与内乘。 超代数(即:Z2-分次代数)的分次导子经常称为超导子。 在初等微分几何中导子是切向量; 凯勒微分 Bourbaki, Nicolas, Algebra I, Elements of mathematics...
    4 KB (774 words) - 17:24, 3 July 2025
  • 曲线的微分几何是几何学的一个分支,使用微分与积分专门研究平面与欧几里得空间中的光滑曲线。 从古代开始,许多具体曲线已经用综合方法深入研究。微分几何采取另外一种方式:把曲线表示为参数形式,将它们的几何性质和各种量,比如曲率和弧长,用向量分析表示为导数和积分。分析曲线最重要的工具之一为 Frenet...
    14 KB (2,574 words) - 03:45, 24 July 2019
  • 中,根据希尔伯特零点定理,一个仿射代数簇的一点对应于坐标上的一个极大理想,仿射概形上的子簇则对应于坐标的素理想。而在概型论中,概型的点集包含了经典情况代数簇的点集,以及所有子簇的信息。这种方法使得经典代数几何(主要涉及闭点)同时联系起了微分几何、数论等主流分支的问题研究。...
    11 KB (1,590 words) - 01:01, 3 July 2025
  • 莫尔斯理论 (category 微分拓扑学)
    微分拓扑中,莫尔斯理论使人们能通过流形上的可微函数分析流形的拓扑。根据马斯顿·莫尔斯的基本见解,流形上的可微函数在典型的情况下,直接反映了该流形的拓扑。莫尔斯理论允许人们在流形上找到CW结构和柄分解,并得到关于它们的同调的信息。 在莫尔斯之前,阿瑟·凯莱和麦克斯韦在测绘学中发展了莫尔斯理论中的一些...
    18 KB (3,002 words) - 14:04, 7 May 2025
  • 单值性 (category 微分几何)
    数学中,单值性(monodromy)研究的是数学分析、代数拓扑、代数几何与微分几何中的对象在“绕着奇点旋转”时的行为。这个领域同覆叠映射及其到分歧的退化密切相关。引发单值现象的方面是,我们想定义一个绕奇点旋转时不保持单值性的函数。可以定义单值群来测量单值性的失效,这是一群作用于数据的变换,编码了在单...
    9 KB (1,562 words) - 10:40, 6 July 2024
  • 在數學中,局部是只有一個極大理想的交換。 局部的概念由 Wolfgang Krull 於1938年引入,稱之為 Stellenringe,英譯 local ring 源自扎裡斯基。 設 R {\displaystyle R} 為交換含幺。若 R {\displaystyle R} 僅有一個極大理想...
    5 KB (924 words) - 15:34, 20 October 2021
  • 微分拓撲學是一門學科,研究在微分流形上的可微函數,與微分幾何密切相關,並一齊組成微分流形的幾何理論。 更具體來說,微分拓撲考慮只依靠定義在流形上之光滑結構的性質與結構。可在光滑流形上附加額外的幾何結構,以用來阻礙存在於微分...
    30 KB (4,312 words) - 01:02, 4 July 2025
  • 偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。 微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。 泛函分析的主要定理包括: 一致有界定理(亦称共鸣定理),该定理描述一族有界算子的性质。...
    6 KB (948 words) - 08:05, 4 July 2025
  • 可平行化流形 (category 微分拓扑学)
    為單位切向量場,比如都指向逆時針方向。n 維面也可以平行化,因為可以看作是圓周的笛卡爾積。譬如取 n=2,將正方形坐標紙的對邊粘貼起來便組成了一個面,取每個點的兩個切方向即可。更一般地,任何李群 G 可平行化,因為在單位元的切空間上一組基可以通過變換群 G 在 G 上的作用移到任何一點。(任何變換是一個微分同胚從而這些微分同胚誘導了...
    2 KB (300 words) - 04:52, 24 February 2018
  • 李群(英語:Lie group,/ˈliː/)是一个数学概念,指具有群结构的光滑微分流形,其群作用與微分结构相容。李群的名字源於挪威数学家索菲斯·李的姓氏,以其為連續變換群奠定基礎。1893年,法文名詞groupes de Lie首次出現在李的學生亞瑟·特雷斯(Arthur Tresse)的論文第三頁中。...
    15 KB (2,786 words) - 04:22, 4 July 2025
  • 微分幾何中有多種不同的的內含映射,例如子流形的嵌入;由此可導出某些反變對象(例如微分形式)的「限制映射」,其方向恰好相反。在代數幾何中的內含映射則稍複雜,此時不僅須考慮底層拓撲空間的映射,也須考慮結構層的同態,例如以下兩個交換譜的包含映射 Spec ⁡ ( R /...
    2 KB (370 words) - 04:05, 3 July 2025
  • 曲面的systole (category 曲面的微分幾何)
    。給定一個閉曲面,其systole記為sys,定義為曲面上不能縮成一點的路的最短長度。一個度量的systolic面積,定義為比例area/sys2,systolic比SR是其倒數sys2/area。 1949年婁威納證明了面T2上的度量的不等式,即是其systolic比SR(T2) 有上界 2...
    5 KB (623 words) - 07:57, 18 November 2021
  • 零化子(annihilator)可能指: 零化子 (論)(英语:Annihilator (ring theory)) 向量子空間的子集的零化子 吸納法(英语:Annihilator method)(annihilator method),一種微分算符,用於一些解微分方程的方法 回歸分析中的消滅矩陣(英语:Annihilator...
    470 bytes (59 words) - 11:54, 25 October 2019