• 微积分基本定理(英語:Fundamental theorem of calculus)描述了微积分的两个主要运算──微分和积分之间的关系。 定理的第一部分,称为微积分第一基本定理,此定理表明:給定任一連續函數,可以(利用積分)構造出該函數的反導函數。這一部分定理的重要之處在於它保證了連續函數的反導函數的存在性。...
    14 KB (2,915 words) - 17:10, 10 March 2024
  • 定理给出了使用逐次积分的方法计算二重积分的条件。 可以用曲面积分和曲线积分在曲面和曲线等流形上进行积分。 在一元微积分中,微积分基本定理建立了导数与积分的联系。多元微积分中导数与积分之间的联系,体现为矢量微积分的积分定理: 梯度定理 斯托克斯定理 高斯散度定理 格林公式 在对多元微积分...
    12 KB (1,691 words) - 19:41, 26 June 2022
  • 微積分基本定理指出,微分和不定積分互為逆運算,這也是兩種理論被統一成微積分學的原因。 歷史上,微積分曾經指無窮小的計算。直至现今,在更深層次的數學領域中,高等微積分学通常被稱為分析學,並被定義為研究函數的科學,是高等數學的主要分支之一。相应的,微積分學又稱為初等數學分析。 现代微积分...
    39 KB (6,522 words) - 16:06, 21 October 2024
  • \varphi (\mathbf {r} )\cdot d\mathbf {r} .} 梯度定理微积分基本定理从直线数轴推广到平面、空间,乃至一般的 n {\displaystyle n} 维空间中的曲线。 梯度定理表明梯度场的曲线积分是路径无关的,这是物理学中“保守力”的定义方式之一。如果 φ {\displaystyle...
    3 KB (635 words) - 03:21, 7 April 2018
  • 以下是一份微积分学主题列表: 函数图形 Linear function(英语:Linear function) 割线 斜率 切线 凹函数 差分 弧度 階乘 二项式定理 自由变量和约束变量 复数 (数学) 极限 (数学) 函數極限 One-sided limit(英语:One-sided limit)...
    4 KB (624 words) - 14:55, 13 August 2024
  • Stokes' formula),它被认为是微积分基本定理、格林公式、高-奥公式、ℝ³ 上的斯托克斯公式的推广;后者实际上是前者的简单推论。 该定理经常用于 M 是嵌入到某个定义了 ω 的更大的流形中的子流形的情形。 定理可以简单的推广到分段光滑的子流形的线性组合上。斯托克斯定理...
    10 KB (1,203 words) - 12:10, 29 April 2024
  • 不定積分在原先的定義上並沒有設定區間,會與導函數間相差一常数 C {\displaystyle C} 。若導函數的定義是有區間的,請參照定積分。 不定积分和定积分间的关系係由微积分基本定理聯繫起來,函数的定积分可以透過先求得不定積分再帶入數字来運算。 有一函數 K ( x ) {\displaystyle K(x)} 與其自變數...
    10 KB (2,410 words) - 13:03, 14 October 2024
  • 预科微积分可能包含: 集合 实数 复数 解不等式和等式 函数的性质 函数和反函數 复合函数 多项式函数 有理函数 三角学 三角函数和反三角函数 三角恒等式 圆锥曲线 指数函数 对数 序列和级数 二项式定理 向量 参数方程 极坐标 矩阵 数学归纳法 极限 AP微积分 Cangelosi...
    3 KB (276 words) - 15:11, 25 January 2022
  • 那么当 x 0 ≤ x ≤ x 1 {\displaystyle \,x_{0}\leq x\leq x_{1}\,\,} 时, 根据全微分公式和微积分基本定理, 该积分对 x {\displaystyle x} 的导数为 d d x F ( x , a ( x ) , b ( x ) ) = ( ∂...
    10 KB (2,117 words) - 06:14, 9 December 2022
  • 换元积分法,又稱變數變換法(英語:Integration by substitution),是求积分的一种方法,由链式法则和微积分基本定理推导而来。 设 f ( x )   {\displaystyle f(x)\ } 为可积函数, g = g ( x )   {\displaystyle g=g(x)\...
    3 KB (687 words) - 11:30, 18 October 2024
  • 中值定理包括微分中值定理和积分中值定理。 微分中值定理分为罗尔中值定理、拉格朗日中值定理和柯西中值定理,内容粗略的说是指平面上一段固定端點的可微曲线,兩端點之中必然有一点,它的斜率與連接兩端點的直線斜率相同(严格的数学表达参见下文)。 當提到均值定理時在沒有特別說明下一般指拉格朗日均值定理。 如果函数...
    8 KB (1,846 words) - 14:36, 2 November 2024
  • FTC缩写可以指: 美国联邦贸易委员会 (Federal Trade Commission) FTC Kaplan FIRST科技挑战赛(FIRST Tech Challenge) 微积分基本定理(Fundamental theorem of calculus)...
    293 bytes (28 words) - 10:42, 19 March 2020
  • 斯通-魏尔施特拉斯逼近定理(Stone–Weierstrass theorem)有两个: 闭区间上的连续函数可用多项式级数一致逼近。 闭区间上周期为 2 π {\displaystyle 2\pi } 的连续函数可用三角函数级数一致逼近。 第一逼近定理可以推广至 R n {\displaystyle...
    3 KB (791 words) - 11:42, 14 May 2024
  • 伯特兰-切比雪夫定理 贝亚蒂定理 贝叶斯定理 博特周期性定理 闭图像定理 伯恩斯坦定理 不动点定理 布列安桑定理 布朗定理 贝祖定理 博苏克-乌拉姆定理 巴拿赫不动点定理 布尔素理想定理 贝尔纲定理 布劳威尔不动点定理 本迪克森-杜拉克定理 本原元定理 垂径定理 陈氏定理 采样定理 迪尼定理 等周定理 代数基本定理...
    7 KB (1,114 words) - 03:16, 15 May 2023
  • 在数学分析中,介值定理(英語:intermediate value theorem,又稱中间值定理)描述了連續函數在兩點之間的連續性: 假設 f : [ a , b ] → R {\displaystyle f:[a,b]\to \mathbb {R} } 為一連續函數。若一實數 u {\displaystyle...
    5 KB (936 words) - 05:54, 23 October 2024
  • 向量分析 (redirect from 向量微積分)
    向量分析研究定义在标量场或向量场定义的不同微分算子,通常用的向量算子(∇)来表示,也被称为“Nabla算子”。向量分析的五个最重要的微分运算: 同样,也有几个与这几个相关的重要定理,将微积分基本定理拓展到了更高维度: 线性近似用几乎相同的线性函数代替复杂函数。给定实值可微函数 f ( x ,   y ) {\displaystyle f(x...
    15 KB (1,882 words) - 05:48, 14 July 2024
  • function)而言,函數在某一點的導數也就可以決定在那一點最佳的线性近似。微分和積分的關係可以由微积分基本定理來說明,此定理說明微分是積分的逆運算。 幾乎所有量化的學科中都有微分的應用。例如在物理学中,運動物體其位移對時間的導數即為其速度,速度對時間的導數就是...
    21 KB (3,197 words) - 13:26, 26 June 2024
  • \,} 这个积分可以是沿着D内从a到b的任何一条路径。函数F是定义良好的,因为根据假设,f沿着从a到b的任何两条曲线的积分一定是相等的。根据微积分基本定理,可知F的导数是f: F ′ ( z ) = f ( z ) . {\displaystyle F'(z)=f(z).\,}...
    3 KB (565 words) - 07:41, 2 April 2023
  • {\displaystyle f} 的不定积分。 微积分基本定理微积分学中的一条重要定理,由艾萨克·牛顿和戈特弗里德·威廉·莱布尼茨在十七世纪分别独立发现。微积分基本定理将积分与微分建立联系,通过找出一个函数的原函数,即可方便地计算它在一个区间上的积分。积分和导数已成为高等数学中最基本的工具,并在自然科学和工程学中得到广泛运用。...
    34 KB (6,981 words) - 10:40, 22 October 2024
  • 泰勒公式 (redirect from 泰勒定理)
    在数学中,泰勒公式(英語:Taylor's Formula)是一个用函数在某点的信息描述其附近取值的公式。這個公式來自於微積分的泰勒定理(Taylor's theorem),泰勒定理描述了一個可微函數,如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建...
    10 KB (1,974 words) - 13:25, 5 March 2024
  • 以法国数学家米歇尔·罗尔命名的罗尔中值定理(英語:Rolle's theorem)是微分学中一条重要的定理,是三大微分中值定理之一,叙述如下:如果函数 f ( x ) {\displaystyle f(x)} 满足 在闭区间 [ a , b ] {\displaystyle [a,b]} 上连续; 在开区间...
    4 KB (795 words) - 14:32, 2 November 2024
  • 分部積分法 (category 微積分定理)
    分部積分法又稱作部分積分法(英語:Integration by parts),是一種積分的技巧。它是由微分的乘法定則和微積分基本定理推導而來的。其基本思路是将不易求得结果的积分形式,转化为等价的但易于求出结果的积分形式。 假設 h ( x )   {\displaystyle h(x)\ } 與 k...
    8 KB (1,957 words) - 04:49, 4 April 2023
  • {\displaystyle Q([x,x+dx])} 的近似值为 f ( x ) d x {\displaystyle f(x)dx} ,由微分形式的微积分基本定理可知,它恰恰是 Q ( x ) {\displaystyle Q(x)} 的微分,即 d Q = d Q ( x ) = f ( x ) d x...
    5 KB (1,148 words) - 02:08, 28 March 2022
  • 古爾丁定理(英語:Guldinus theorem),最初由古希臘的帕普斯發現,後來在16世紀保羅·古爾丁(英语:Paul Guldin)又重新發現了這個定理。 有一條平面曲線,跟它的同一個平面上有一條軸。由該平面曲線以該條軸與旋轉而產生的旋轉曲面的表面積 A {\displaystyle A} ,等於曲線的長度...
    2 KB (369 words) - 03:38, 21 March 2022
  • 夾擠定理(英語:squeeze theorem),又稱夹逼定理、夹极限定理、三明治定理、逼近定理、迫敛定理,是有關函數的極限的数学定理。指出若有兩個函數在某點的極限相同,且有第三個函數的值在這兩個函數之間,则第三個函數在該點的極限也相同。 設 I {\displaystyle I} 為包含某點 a...
    5 KB (1,250 words) - 14:51, 25 October 2024
  • 微积分中,极值定理(或最值定理)说明如果实函数f在闭区间[a,b]上是连续函数,则它一定取得最大值和最小值,至少一次。也就是说,存在[a,b]内的c和d,使得: f ( c ) ≥ f ( x ) ≥ f ( d ) {\displaystyle f(c)\geq f(x)\geq f(d)} 对于所有...
    8 KB (1,297 words) - 15:59, 5 July 2024
  • 詹姆斯·格雷果里(James Gregory,1638年11月—1675年10月),苏格兰数学家、天文学家。他最早证明微积分基本定理,并发明了最早的反射望远镜(格里望遠鏡)。 格雷果里1638年11月生于苏格兰阿伯丁附近,初就学于阿伯丁。1665年到意大利帕多瓦大学,继续研究数学和天文。...
    2 KB (210 words) - 06:41, 1 May 2024
  • 数与傅里叶变换。此教程篇幅巨大、内容丰富并含有大量例题及应用实例,定理证明详尽细致、处理方法经典,理论内容论述深刻。种种原因使得全书被译为多种文字,并在中、东欧国家及中国大陆广为流传。目前最新中译版是高等教育出版社第八版。 《微积分学教程》的作者菲赫金哥尔茨是苏联数学家及数学教育家,是实变函数论列...
    7 KB (1,082 words) - 06:33, 4 June 2023
  • ) d z = 0 {\displaystyle \oint _{\gamma }f(z)\,dz=0} 该定理的一个直接推论,是在单连通域内全纯函数的路径积分可以用类似于微积分基本定理的方法来计算:设 Ω {\displaystyle \Omega } 是复平面 C {\displaystyle...
    8 KB (1,603 words) - 07:23, 10 May 2024
  • theorem)、散度定理(Divergence Theorem)、高斯散度定理(Gauss's Divergence Theorem)、高斯-奥斯特罗格拉德斯基公式或高-奥公式,是指在向量分析中,一个把向量场通过闭合曲面的流动(即通量)与曲面内部的向量场的表现联系起来的定理。该定理与斯托克斯定理(Stokes'...
    12 KB (2,126 words) - 05:27, 13 June 2023
  • {x}}}-{\frac {\partial {u}}{\partial {y}}}\right)dx\wedge dy} 这刚好就是在格林定理中被积分的2-形式。 向量微積分的恆等式: ∇ × ( ∇ f ) = 0 {\displaystyle \nabla \times (\nabla f)=0} 與...
    5 KB (1,069 words) - 13:27, 8 November 2021