Hellmuth Stachel (born October 6, 1942, in Graz, Austria) is an Austrian mathematician, a professor of geometry at the Technical University of Vienna,...
6 KB (595 words) - 01:06, 25 December 2023
1991), American actor Hellmuth Stachel (born 1942), Austrian mathematician Jack Stachel (1900–1965), American communist John Stachel (born 1928), American...
364 bytes (89 words) - 16:05, 7 January 2022
Schatz foundation website Paul Schatz models (in German) Hans Dirnböck, Hellmuth Stachel: The Development of the Oloid About Kaleidocycles, including mention...
1 KB (84 words) - 12:25, 24 June 2022
plasma physicist Heinz Zemanek (1920-2014), Austrian computer pioneer Hellmuth Stachel (born 1942), Austrian mathematician Herman Potočnik (1892–1929), Slovene...
22 KB (1,469 words) - 01:16, 21 October 2024
Glaeser, Georg (1999). Open geometry : OpenGL + advanced geometry. Hellmuth Stachel. New York: Springer. ISBN 0-387-98599-9. OCLC 39478013. Glaeser, Georg...
6 KB (649 words) - 04:58, 5 June 2023
Euclidean space and 3-dimensional hyperbolic space were studied by Hellmuth Stachel (2000). In dimensions n ≥ 5 {\displaystyle n\geq 5} , flexible polytopes...
10 KB (907 words) - 12:32, 26 August 2021
he wrote several, at that time successful, but now forgotten operas Hellmuth Stachel (born 1942), grew up in Trofaiach, Austrian mathematician and professor...
4 KB (151 words) - 02:15, 24 July 2024
Konstruktive Geometrie (TU Darmstadt) (PDF; 3,4 MB), p. 65. Georg Glaeser, Hellmuth Stachel, Boris Odehnal: The Universe of Conics, Springer 2016, ISBN 978-3-662-45449-7...
10 KB (1,769 words) - 16:07, 28 October 2024
& Sons, 2014, ISBN 1118698274, p. 128. Glaeser-Stachel-Odehnal p. 139 Georg Glaeser, Hellmuth Stachel, Boris Odehnal: The Universe of Conics, Springer...
5 KB (707 words) - 20:23, 4 February 2024
academiae scientiarum imperialis Petropolitanae (in Latin). 3: 90–99. Stachel, Hellmuth; Wallner, Johannes (2004). "Ivory's theorem in hyperbolic spaces"...
12 KB (1,056 words) - 22:38, 25 August 2024
Cambridge University Press, pp. 198–213, ISBN 0-521-00264-8 Georg Glaeser, Hellmuth Stachel, Boris Odehnal: The Universe of Conics, Springer, 2016, ISBN 3662454505...
4 KB (478 words) - 07:53, 6 November 2020
series, volume 3. Paris: Carilian-Gœury et Vor. Dalmont: 105–107. Stachel, Hellmuth (2002). "Remarks on A. Hirsch's Paper concerning Villarceau Sections"...
11 KB (1,496 words) - 14:39, 4 November 2024
1007/s00222-002-0234-y, MR 1933586, S2CID 730891. Dirnböck, Hans; Stachel, Hellmuth (1997), "The development of the oloid" (PDF), Journal for Geometry...
9 KB (892 words) - 16:20, 15 November 2022
R. (1838), Analytical Geometry, J. Souter, p. 227 Odehnal, Boris; Stachel, Hellmuth; Glaeser, Georg (2020), "Linear algebraic approach to quadrics", The...
5 KB (592 words) - 08:24, 27 January 2024
incorporate the skeleton and rolling motion of the oloid. Dirnböck, Hans; Stachel, Hellmuth (1997), "The development of the oloid" (PDF), Journal for Geometry...
7 KB (857 words) - 17:09, 8 June 2024
of Geometry (Volume One), Boston: Allyn and Bacon Glaeser, Georg; Stachel, Hellmuth; Odehnal, Boris (2016), The Universe of Conics: From the ancient Greeks...
69 KB (9,164 words) - 08:19, 2 November 2024
Historia Mathematica. 8 (4): 458–459. doi:10.1016/0315-0860(81)90054-9. Stachel, Hellmuth (2002). "Napoleon's Theorem and Generalizations Through Linear Maps"...
14 KB (1,597 words) - 07:03, 13 May 2024
278–282, doi:10.2307/2316373, JSTOR 2316373, MR 0246207 Glaeser, Georg; Stachel, Hellmuth; Odehnal, Boris (2016), "The parabolic pencil – a common line element"...
50 KB (6,368 words) - 21:18, 29 July 2024
199–209, doi:10.2307/2302604, JSTOR 2302604, MR 1524247 Dirnböck, Hans; Stachel, Hellmuth (1997), "The development of the oloid" (PDF), Journal for Geometry...
61 KB (7,161 words) - 05:35, 2 November 2024
Geometry] (in German). Basel: Springer. pp. 108–132. Glaeser, Georg; Stachel, Hellmuth; Odehnal, Boris (2016). "2. Euclidean Plane". The Universe of Conics...
22 KB (3,676 words) - 13:31, 11 January 2024
Storia della matematica. UTET, ISBN 88-7750-852-3 Corry, L., Renn, J., and Stachel, J., 1997, "Belated Decision in the Hilbert-Einstein Priority Dispute,"...
59 KB (7,101 words) - 20:26, 14 October 2024