Hurwitzpolynom – Wikipedia

Ein Hurwitzpolynom (nach Adolf Hurwitz) ist ein reelles Polynom, dessen Nullstellen alle einen echt negativen Realteil haben.

Definition und notwendige Bedingung

[Bearbeiten | Quelltext bearbeiten]

Ein reelles Polynom (alle )

wird also Hurwitzpolynom genannt, wenn gilt:

Für den Fall eines Polynoms 1. oder 2. Grades () kann man zeigen, dass die Koeffizienten des normierten Hurwitzpolynoms () positiv sein müssen. Im Umkehrschluss muss ein solches normiertes Polynom mit reellen Koeffizienten, bei dem ein Koeffizient kleiner oder gleich Null ist, eine Nullstelle haben, die keinen echt negativen Realteil besitzt. Die Bedingung, dass die Koeffizienten positiv sind, ist also notwendig und auch hinreichend.

Für (ein Polynom dritten oder höheren Grades) wird eine neue hinreichende und notwendige Bedingung benötigt: die Hurwitzdeterminante.

Hurwitz-Kriterium

[Bearbeiten | Quelltext bearbeiten]

Das Hurwitz-Kriterium oder Routh-Hurwitz-Kriterium gibt eine äquivalente Bedingung dafür, dass ein Polynom ein Hurwitz-Polynom ist.

Im Folgenden gehen wir davon aus, dass der Leitkoeffizient positiv ist. Ist dieses im ursprünglichen Polynom nicht der Fall, kann es durch Multiplikation des Polynoms mit erreicht werden. Dabei ändern sich die Nullstellen des Polynoms nicht. Aus den Koeffizienten des Polynoms wird zunächst die Determinante der Hurwitzmatrix, die sogenannte Hurwitzdeterminante gebildet. Hierbei ist die Hurwitzmatrix den Koeffizienten entsprechend eine -Matrix. (s. u.)

Nicht vorhandene Koeffizienten werden also durch eine Null ausgedrückt.

Hurwitz-Kriterium: Das Polynom ist genau dann ein Hurwitzpolynom, wenn alle „nordwestlichen Unterdeterminanten“ (auch führende Hauptminoren genannt) positiv sind. Die Matrix ist dann positiv definit.

Im Beispiel sind die nordwestlichen Unterdeterminanten für den Fall :

Falls ist, vereinfacht sich natürlich die dritte Bedingung zu . Die Forderung ist zum Beispiel für nicht erfüllt.

In der Literatur finden sich auch andere Definitionen der Hurwitzmatrix. Die Koeffizienten sind oft anders benannt. Hurwitz selber hat in seiner Veröffentlichung das Polynom mit angesetzt. In diesem Fall wird die Hurwitzdeterminante folgendermaßen gebildet:

Hurwitzpolynome werden in der Systemtheorie verwendet, um ein zeitkontinuierliches System auf asymptotische Stabilität hin zu untersuchen: Ist der Nenner der Systemfunktion ein Hurwitzpolynom, so ist das System asymptotisch stabil.

  • Adolf Hurwitz: Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt. In: Mathematische Annalen Nr. 46, Leipzig 1895, S. 273–285
  • Jan Lunze: Regelungstechnik 1. Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen. 10. Auflage, Heidelberg 2014, S. 418–420
  • Eberhard Zeidler (Hrsg.): Springer-Taschenbuch der Mathematik. 3. Auflage, Wiesbaden 2013, S. 473