Lineare Unabhängigkeit – Wikipedia
In der linearen Algebra wird eine Familie von Vektoren eines Vektorraums linear unabhängig genannt, wenn sich der Nullvektor nur durch eine Linearkombination der Vektoren erzeugen lässt, in der alle Koeffizienten der Kombination auf den Wert null gesetzt werden. Äquivalent dazu ist, dass sich keiner der Vektoren als Linearkombination der anderen Vektoren der Familie darstellen lässt.
Andernfalls heißen sie linear abhängig. In diesem Fall lässt sich mindestens einer der Vektoren (aber nicht notwendigerweise jeder) als Linearkombination der anderen darstellen.
Zum Beispiel sind im dreidimensionalen euklidischen Raum die Vektoren , und linear unabhängig. Die Vektoren , und sind hingegen linear abhängig, denn der dritte Vektor ist die Summe der beiden ersten, d. h. die Differenz von der Summe der ersten beiden und dem dritten ist der Nullvektor. Die Vektoren , und sind wegen ebenfalls linear abhängig; jedoch ist hier der dritte Vektor nicht als Linearkombination der beiden anderen darstellbar.
Definition
[Bearbeiten | Quelltext bearbeiten]Ist ein Vektorraum über einem Körper , so heißen die Vektoren aus linear unabhängig, wenn die einzig mögliche Darstellung des Nullvektors als Linearkombination
mit Koeffizienten aus dem Grundkörper diejenige ist, bei der alle Koeffizienten gleich null sind. Lässt sich dagegen der Nullvektor auch nichttrivial (mit Koeffizienten ungleich null) erzeugen, dann sind die Vektoren linear abhängig.[1][2][3]
Ist eine beliebige Indexmenge, so heißt eine Familie von Vektoren aus linear unabhängig, falls jede endliche Teilfamilie linear unabhängig ist.[2][3]
Die Familie ist also genau dann linear abhängig, wenn es eine endliche Teilmenge gibt, sowie Koeffizienten , von denen mindestens einer ungleich 0 ist, so dass
Der Nullvektor ist ein Element des Vektorraumes . Im Gegensatz dazu ist 0 ein Element des Körpers .
Der Begriff wird auch für Teilmengen eines Vektorraums verwendet: Eine Teilmenge eines Vektorraums heißt linear unabhängig, wenn jede Linearkombination von paarweise verschiedenen Vektoren aus nur dann den Nullvektor darstellen kann, wenn alle Koeffizienten in dieser Linearkombination den Wert null haben. Man beachte folgenden Unterschied: Ist etwa eine linear unabhängige Familie, so ist offenbar eine linear abhängige Familie. Die Menge ist dann aber linear unabhängig.
Andere Charakterisierungen und einfache Eigenschaften
[Bearbeiten | Quelltext bearbeiten]- Die Familie von Elementen eines -Vektorraums ist genau dann linear unabhängig, wenn die lineare Abbildung den Kern hat.
- Die Vektoren sind genau dann linear unabhängig, wenn sich keiner von ihnen als Linearkombination der anderen darstellen lässt.
Diese Aussage gilt nicht im allgemeineren Kontext von Moduln über Ringen.
- Eine Variante dieser Aussage ist das Abhängigkeitslemma: Sind linear unabhängig und linear abhängig, so lässt sich als Linearkombination von schreiben.
- Ist eine Familie von Vektoren linear unabhängig, so ist jede Teilfamilie dieser Familie ebenfalls linear unabhängig. Ist eine Familie hingegen linear abhängig, so ist jede Familie, die diese abhängige Familie beinhaltet, ebenso linear abhängig.
- Elementare Umformungen der Vektoren verändern die lineare Abhängigkeit oder die lineare Unabhängigkeit nicht.
- Ist einer der der Nullvektor (hier: Sei ), so sind diese linear abhängig – der Nullvektor kann erzeugt werden, indem alle gesetzt werden mit Ausnahme von , welches als Koeffizient des Nullvektors beliebig (also insbesondere auch ungleich null) sein darf.
- In einem -dimensionalen Raum ist eine Familie aus mehr als Vektoren immer linear abhängig (siehe Schranken-Lemma).
Ermittlung mittels Determinante
[Bearbeiten | Quelltext bearbeiten]Hat man Vektoren eines -dimensionalen Vektorraums als Zeilen- oder Spaltenvektoren bzgl. einer festen Basis gegeben, so kann man deren lineare Unabhängigkeit dadurch prüfen, dass man diese Zeilen- bzw. Spaltenvektoren zu einer -Matrix zusammenfasst und dann deren Determinante ausrechnet. Die Vektoren sind genau dann linear unabhängig, wenn die Determinante ungleich 0 ist.
Basis eines Vektorraums
[Bearbeiten | Quelltext bearbeiten]Eine wichtige Rolle spielt das Konzept der linear unabhängigen Vektoren bei der Definition beziehungsweise beim Umgang mit Vektorraumbasen. Eine Basis eines Vektorraums ist ein linear unabhängiges Erzeugendensystem. Basen erlauben es, insbesondere bei endlichdimensionalen Vektorräumen mit Koordinaten zu rechnen.
Beispiele
[Bearbeiten | Quelltext bearbeiten]- und sind linear unabhängig und definieren die Ebene P.
- , und sind linear abhängig, weil sie in derselben Ebene liegen.
- und sind linear abhängig, da sie parallel zueinander verlaufen.
- , und sind linear unabhängig, da und voneinander unabhängig sind und sich nicht als lineare Kombination der beiden darstellen lässt bzw. weil sie nicht auf einer gemeinsamen Ebene liegen. Die drei Vektoren definieren einen drei-dimensionalen Raum.
- Die Vektoren (Nullvektor) und sind linear abhängig, da
Einzelner Vektor
[Bearbeiten | Quelltext bearbeiten]Der Vektor sei ein Element des Vektorraums über . Dann ist der einzelne Vektor für sich genau dann linear unabhängig, wenn er nicht der Nullvektor ist.
Denn aus der Definition des Vektorraums folgt, dass wenn
- mit ,
nur oder sein kann.
Vektoren in der Ebene
[Bearbeiten | Quelltext bearbeiten]Die Vektoren und sind in linear unabhängig.
Beweis: Für gelte
d. h.
Dann gilt
also
Dieses Gleichungssystem ist nur für die Lösung , (die sogenannte triviale Lösung) erfüllt; d. h. und sind linear unabhängig.
Standardbasis im n-dimensionalen Raum
[Bearbeiten | Quelltext bearbeiten]Die kanonischen Einheitsvektoren
sind im Vektorraum linear unabhängig.
Beweis: Für gelte
Dann gilt aber auch
und daraus folgt, dass für alle .
Funktionen als Vektoren
[Bearbeiten | Quelltext bearbeiten]Sei der Vektorraum aller Funktionen . Die beiden Funktionen und in sind linear unabhängig.
Beweis: Es seien und es gelte
für alle . Leitet man diese Gleichung nach ab, dann erhält man eine zweite Gleichung
- .
Indem man von der zweiten Gleichung die erste subtrahiert, erhält man
- .
Da diese Gleichung für alle und damit insbesondere auch für gelten muss, folgt daraus durch Einsetzen von , dass sein muss. Setzt man das so berechnete wieder in die erste Gleichung ein, dann ergibt sich
- .
Daraus folgt wieder, dass (für ) sein muss.
Da die erste Gleichung nur für und lösbar ist, sind die beiden Funktionen und linear unabhängig.
Reihen
[Bearbeiten | Quelltext bearbeiten]Sei der Vektorraum aller reellwertigen stetigen Funktionen auf dem offenen Einheitsintervall. Dann gilt zwar
aber dennoch sind linear unabhängig. Linearkombinationen aus Potenzen von sind nämlich nur Polynome und keine allgemeinen Potenzreihen, insbesondere also in der Nähe von 1 beschränkt, so dass sich nicht als Linearkombination von Potenzen darstellen lässt.
Zeilen und Spalten einer Matrix
[Bearbeiten | Quelltext bearbeiten]Interessant ist auch die Frage, ob die Zeilen einer Matrix linear unabhängig sind oder nicht. Dabei werden die Zeilen als Vektoren betrachtet. Falls die Zeilen einer quadratischen Matrix linear unabhängig sind, so nennt man die Matrix regulär, andernfalls singulär. Die Spalten einer quadratischen Matrix sind genau dann linear unabhängig, wenn die Zeilen linear unabhängig sind. Beispiel einer Folge von regulären Matrizen: Hilbert-Matrix.
Rationale Unabhängigkeit
[Bearbeiten | Quelltext bearbeiten]Reelle Zahlen, die über den rationalen Zahlen als Koeffizienten linear unabhängig sind, nennt man rational unabhängig oder inkommensurabel. Die Zahlen sind demnach rational unabhängig oder inkommensurabel, die Zahlen dagegen rational abhängig.
Verallgemeinerungen
[Bearbeiten | Quelltext bearbeiten]Die Definition linear unabhängiger Vektoren lässt sich analog auf Elemente eines Moduls anwenden. In diesem Zusammenhang werden linear unabhängige Familien auch frei genannt (siehe auch: freier Modul).
Der Begriff der linearen Unabhängigkeit lässt sich weiter zu einer Betrachtung von unabhängigen Mengen verallgemeinern, siehe dazu Matroid.
Literatur
[Bearbeiten | Quelltext bearbeiten]- Siegfried Bosch: Lineare Algebra. 5. Auflage, Springer, Berlin/Heidelberg 2014, ISBN 978-3-642-55259-5, Kapitel 1.5.
- Albrecht Beutelsbacher: Lineare Algebra: Eine Einführung in die Wissenschaft der Vektoren, Abbildungen und Matrizen. 8. Auflage, Springer, Gießen 2014, ISBN 978-3-658-02412-3
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Ilja Nikolajewitsch Bronstein, Konstantin Adolfowitsch Semendjajew: Taschenbuch der Mathematik. 5. überarbeitete und erweiterte Auflage. Verlag Harri Deutsch, Thun und Frankfurt am Main 2001, ISBN 3-8171-2005-2, S. 327.
- ↑ a b Gerd Fischer, Boris Springborn: Lineare Algebra. Eine Einführung für Studienanfänger. 19. Auflage. Springer, Berlin 2020, ISBN 978-3-662-61644-4, S. 100.
- ↑ a b Albrecht Beutelspacher: Lineare Algebra. Eine Einführung in die Wissenschaft der Vektoren, Abbildungen und Matrizen. 8. Auflage. Springer, Wiesbaden 2014, ISBN 978-3-658-02412-3, S. 67.