Dieser Artikel behandelt die radiale Verteilungsfunktion in der Statistischen Physik. Für die radiale Wahrscheinlichkeitsdichtefunktion in der Quantenmechanik, siehe dort.
Die radiale Verteilungsfunktion (Abkürzung rdf) mit dem Formelzeichen zwischen zwei Teilchensorten A und B beschreibt die Häufigkeit, mit der man ein Teilchen der Sorte B im Abstand von einem Teilchen der Sorte A findet, bezogen auf die Häufigkeit, dass zwei Teilchen eines idealen Gases in diesem Abstand vorliegen. Die radiale Verteilungsfunktion ist somit dimensionslos.[1]
Zur Bestimmung der radialen Verteilungsfunktion zählt man wie in Abbildung 1 die Zahl der Teilchen der Sorte B (blau) in der Kugelschale mit Radius und Dicke um ein Teilchen der Sorte A (dunkelrot). Dadurch erhält man ein Histogramm. Normiert man dieses Histogramm entsprechend, erhält man die radiale Verteilungsfunktion. Bei Molekulardynamik oder Metropolis-Importance-Sampling gilt folgende Formel: . Hierbei wird der Histogrammeintrag, welcher dem Abstand zugeordnet ist, durch das Bin-Volumen , sowie die Zahl der Stichproben () geteilt, wodurch man eine mittlere Dichte im Bin erhält. Diese mittlere Dichte wird anschließend mit der Dichte eines idealen Gases verglichen.
Durch Abintegrieren von Orten und allen Geschwindigkeiten aus der 2N-Punkt-Wahrscheinlichkeitsdichte erhält man zunächst die 2-Punkt-Wahrscheinlichkeitsdichte
Die Paarverteilungsfunktion (auch Paarkorrelationsfunktion) hängt nicht nur vom Abstand ab, sondern wegen (Kugelkoordinaten) auch von den Winkeln und . Die (statische) Paarkorrelationsfunktion ist gegeben durch:
Dieses Ergebnis erhält man aus der Berechnung der (kollektiven) Van-Hove-Korrelationsfunktion [2], indem man die Definition der Dichte einsetzt, über abintegriert und anschließend bei auswertet. Dabei ist zu beachten, dass