Shi-Epoxidierung – Wikipedia
Die Shi-Epoxidierung ist eine Namensreaktion der Organischen Chemie. Als Shi-Epoxidierung bezeichnet man die organokatalytische asymmetrische Epoxidierung von Alkenen mithilfe von chiralen Dioxiranen auf Basis von Fructosederivaten.[1][2][3]
Die Reaktion verläuft mit sehr hohen Enantioselektivitäten.[4][5] Ein Vorteil der Shi-Epoxidierung ist, dass unfunktionalisierte trans-Alkene in Epoxide überführt werden können.[6] Die Fructosederivate der Shi-Epoxidierung (auch Shi-Katalysatoren genannt) sind Organokatalysatoren, welche durch ein Oxidationsmittel (meist Oxone) in chirale Dioxirane überführt werden, welche dann die Alkene epoxidieren.[7]
Da die Reaktion auf Fructosederivaten basiert, verläuft sie metallfrei. Dioxirane gelten als umweltfreundliche und vielseitige Oxidationsmittel.[8] Die Reaktion ist nach dem chinesischen Chemiker Yian Shi benannt, welcher die Methode 1996 veröffentlichte.[9] Die Shi-Epoxidierung ist ein wichtiges Beispiel für asymmetrische Organokatalyse und hat breite Anwendung in der Synthese gefunden.[10][11] Die ersten Grundlagen zur Epoxidierung von Alkenen mithilfe von chiralen Ketonen wurde 1984 von Ruggero Curci publiziert.[12]
Reaktionsmechanismus
[Bearbeiten | Quelltext bearbeiten]Die Reaktion kann über einen Spiro-Übergangszustand oder einen planaren Übergangszustand verlaufen, wobei in fast allen Fällen bei trans-disubstituierten und trisubstituierten Olefinen ein Spiro-Übergangszustand angenommen wird.[13] Die Kontrolle des pH-Wertes ist für die Reaktion von entscheidender Bedeutung: bei zu hohem pH-Wert zersetzen sich Oxone, während bei zu niedrigem pH-Wert eine Baeyer-Villiger-Umlagerung als Nebenreaktion abläuft.[14] Hinzu kommt, dass sich Epoxide im Sauren zersetzen. Für einen Shi-Katalysator auf Basis von ᴅ-Fructose ergibt sich folgender Katalysezyklus:
Synthese von Shi-Katalysatoren
[Bearbeiten | Quelltext bearbeiten]Die Shi-Katalysatoren sind durch einfache Syntheseschritte direkt aus diversen Zuckern zugänglich. So kann ᴅ-Fructose durch säurekatalysierte Acetalbildung und nachfolgender Oxidation mit PCC in folgenden Shi-Katalysator überführt werden:[15]
Siehe auch
[Bearbeiten | Quelltext bearbeiten]- Sharpless-Epoxidierung
- Jacobsen-Epoxidierung
- Johnson-Corey-Chaykovsky-Epoxidierung
- Prileschajew-Reaktion
- Darzens-Glycidester-Kondensation
Literatur
[Bearbeiten | Quelltext bearbeiten]- Jan-Erling Bäckvall: Modern Oxidation Methods. Wiley-VCH, Weinheim 2010, ISBN 978-3-527-32320-3, Kapitel 3 (englisch).
- László Kürti, Barbara Czakó: Strategic Applications of Named Reactions in Organic Synthesis: Background and Detailed Mechanisms. Elsevier, Amsterdam 2019, ISBN 978-0-12-429785-2 (englisch).
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Yian Shi: Organocatalytic Asymmetric Epoxidation of Olefins by Chiral Ketones. In: American Chemical Society (Hrsg.): Accounts of chemical research. Vol. 37, Nr. 8, 2004, doi:10.1021/ar030063x.
- ↑ Rebecca L. Davis, Julian Stiller, Tricia Naicker, Hao Jiang, Karl Anker Jørgensen: Asymmetric Organocatalytic Epoxidations: Reactions, Scope, Mechanisms, and Applications. In: Angewandte Chemie International Edition. Band 53, 11. Juni 2014, S. 7406–7426, doi:10.1002/anie.201400241.
- ↑ László Kürti, Barbara Czakó: Strategic Applications of Named Reactions in Organic Synthesis: Background and Detailed Mechanisms. Elsevier Academic Press, ISBN 978-0-12-429785-2, S. 410, 676.
- ↑ Yong Tu, Zhi-Xian Wang, and Yian Shi: An Efficient Asymmetric Epoxidation Method for trans-Olefins Mediated by a Fructose-Derived Ketone. In: Journal of the American Chemical Society. Band 118, Nr. 40, 9. Oktober 1996, S. 9806–9807, doi:10.1021/ja962345g.
- ↑ Yingguang Zhu, Qian Wang, Richard G. Cornwall, Yian Shi: Organocatalytic Asymmetric Epoxidation and Aziridination of Olefins and Their Synthetic Applications. In: American Chemical Society (Hrsg.): Chem. Rev. Band 114, 1. Mai 2014, S. 8199–8256, doi:10.1021/cr500064w.
- ↑ Erick M. Carreira, Lisbet Kvaerno: Classics in Stereoselective Synthesis. Wiley-VCH, 2009, ISBN 978-3-527-29966-9, S. 274.
- ↑ Jerry March, Michael B. Smith: March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. 8. Auflage. Wiley, ISBN 978-1-119-37180-9, S. 1014.
- ↑ Laszlo Kurti, Barbara Czako: Strategic Applications of Named Reactions in Organic Synthesis: Background and Detailed Mechanisms. Elsevier Academic Press, ISBN 978-0-12-429785-2, S. 410, 676.
- ↑ Yong Tu, Zhi-Xian Wang, and Yian Shi: An Efficient Asymmetric Epoxidation Method for trans-Olefins Mediated by a Fructose-Derived Ketone. In: Journal of the American Chemical Society. Band 118, Nr. 40, 9. Oktober 1996, S. 9806–9807, doi:10.1021/ja962345g.
- ↑ Yingguang Zhu, Qian Wang, Richard G. Cornwall, Yian Shi: Organocatalytic Asymmetric Epoxidation and Aziridination of Olefins and Their Synthetic Applications. In: American Chemical Society (Hrsg.): Chem. Rev. Band 114, 1. Mai 2014, S. 8199–8256, doi:10.1021/cr500064w.
- ↑ Zhaoming Xiong, E. J. Corey: Simple Enantioselective Total Synthesis of Glabrescol, a Chiral C 2 Symmetric Pentacyclic Oxasqualenoid. In: Journal of the American Chemical Society. Band 122, Nr. 38, 2000, S. 9328–9329, doi:10.1021/ja0024901.
- ↑ Ruggero Curci, Michele Fiorentino, Maria R. Serio: Asymmetric epoxidation of unfunctionalized alkenes by dioxirane intermediates generated from potassium peroxomonosulphate and chiral ketones. In: Royal Society of Chemistry (Hrsg.): J. Chem. Soc., Chem. Commun. 1984, S. 155–156, doi:10.1039/C39840000155.
- ↑ Laszlo Kurti, Barbara Czako: Strategic Applications of Named Reactions in Organic Synthesis: Background and Detailed Mechanisms. Elsevier Academic Press, ISBN 978-0-12-429785-2, S. 410, 676.
- ↑ Laszlo Kurti, Barbara Czako: Strategic Applications of Named Reactions in Organic Synthesis: Background and Detailed Mechanisms. Elsevier Academic Press, ISBN 978-0-12-429785-2, S. 410, 676.
- ↑ Yian Shi: Organocatalytic Asymmetric Epoxidation of Olefins by Chiral Ketones. In: American Chemical Society (Hrsg.): Accounts of chemical research. Vol. 37, Nr. 8, 2004, doi:10.1021/ar030063x.