ZEKE-Spektroskopie – Wikipedia

Die ZEKE-Spektroskopie (ZEKE kurz für englisch zero-electron kinetic energy oder auch nur zero kinetic energy) stellt eine besondere Form der Photoelektronenspektroskopie dar, bei der ausschließlich Elektronen nachgewiesen werden, die (nahezu) keine kinetische Energie besitzen (zero kinetic energy).

Sie wurde 1984 an der TU München von Klaus Müller-Dethlefs und Edward W. Schlag entwickelt.[1][2]

Kugelsymmetrisches Coulomb-Potential (links) und das Coulomb-Potential im elektrischen Feld (rechts).

Das zu untersuchende Gas wird mit einem kurzen Laserpuls bestrahlt. Nachdem dieser Laserpuls abgeklungen ist, wird die Zeit abgewartet. In dieser Zeit bewegen sich alle Elektronen mit aus dem Untersuchungsbereich heraus. Mit Hilfe eines elektrischen Feldes werden nach Ablauf von alle restlichen Elektronen abgesaugt und gemessen. Mit dieser Methode können insbesondere Elektronen an der Ionisationsgrenze detektiert werden.[3] Diese Null-Energie-Elektronen sind eine Signatur der verschiedenen Rydberg-Zustände und können durch einen Rohrkanal gefiltert werden und mit der CW-Methode oder durch Puls-Verzögerung detektiert werden, nachdem alle heißen Elektronen abgesaugt sind. Da hier keine geladene Oberflächen benutzt werden, ist die Auflösung im Vergleich zur normalen Photoelektronen-Spektroskopie um viele Größenordnungen gesteigert.

Abschätzung von Ec

[Bearbeiten | Quelltext bearbeiten]

Typische Abmessungen des Untersuchungsbereichs liegen im Millimeterbereich, kann im Millisekundenbereich angesetzt werden. Weiterhin sei eine radiale Symmetrie des Untersuchungsbereichs (r = 1 mm) und eine Ionisierung in dessen Mitte angenommen. Um aus dem Untersuchungsbereich herauszukommen, folglich nicht mehr gemessen zu werden, muss ein Elektron mit der Energie einen Weg von 1 mm zurücklegen. Im Fall nichtrelativistischer Elektronen gilt für die kinetische Energie

und somit

.

Ein Elektron verlässt den Untersuchungsbereich, wenn gilt

.

Es gilt somit

.

Mit , und ergibt sich

.

Für die angegebenen Werte werden also nur Elektronen mit einer kinetischen Energie unter detektiert.

Vorteile der ZEKE-Spektroskopie

[Bearbeiten | Quelltext bearbeiten]

Im Gegensatz zu der klassischen Photoemissionsspektroskopie ist es bei der ZEKE-Spektroskopie nicht nötig, die Elektronen nach ihrer Energie zu separieren. Die Geräte werden somit einfacher. Weiterhin ist die Ausbeute an Elektronen deutlich größer, da sich diese normalerweise in alle Raumrichtungen verteilen. Es wird somit nur ein geringer Teil der Elektronen einer bestimmten Energie gemessen. Bei der ZEKE-Spektroskopie werden jedoch alle Elektronen detektiert, die die entsprechende Energie besitzen. Im Vergleich zur PES und vielen Verfahren vermeidet man hier Verzerrungen durch das Oberflächenpotential des Spektrometers.

  • Eckhard Waterstradt: ZEKE Spektroskopie an Molekülen und Molekülclustern bei XUV, VUV und Multiphotonanregung. Herbert Utz Verlag, 1999, ISBN 3-89675-190-5.
  • Hans-Jörg Dietrich: Langlebige, molekulare Rydbergzustände in der ZEKE-Spektroskopie: Ionisationsdynamik und neue experimentelle Techniken. Herbert Utz Verlag, 1996, ISBN 978-3-89675-159-1.
  • E. W. Schlag: ZEKE Spectroscopie. Cambridge University Press, 1998, ISBN 978-0-521-67564-2.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Klaus Müller-Dethlefs, Michael Sander, Edward W. Schlag: A Novel Method Capable of Resolving Rotational Ionic States by the Detection of Threshold Photoelectrons with a Resolution of 1.2 cm−1. In: Zeitschrift für Naturforschung A. Band 39, Nr. 11, 1. November 1984, S. 1089–1091, doi:10.1515/zna-1984-1112.
  2. K. Müller-Dethlefs, E. W. Schlag: High-Resolution Zero Kinetic Energy (ZEKE) Photoelectron Spectroscopy of Molecular Systems. In: Annual Review of Physical Chemistry. Band 42, 1. Oktober 1991, S. 109–136, doi:10.1146/annurev.pc.42.100191.000545.
  3. Gerhard Drechsler: Photoelektronen-Spektroskopie mit Null-Energie-Elektronen. In: Nachrichten aus Chemie, Technik und Laboratorium. 40, Nr. 1, 1992, S. 20–22, doi:10.1002/nadc.19920400107.