4-Methylcatechol
Names | |
---|---|
Preferred IUPAC name 4-Methylbenzene-1,2-diol | |
Other names 4-Methyl-1,2-dihydroxybenzene 3,4-Dihydroxytoluene Homocatechol 4-Methyl-1,2-benzenediol Homopyrocatechol p-Methylcatechol | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.006.559 |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
Properties | |
C7H8O2 | |
Molar mass | 124.139 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
4-Methylcatechol is an organic compound with the formula CH3C6H3(OH)2 A white solid, it is one of the isomers of methylbenzenediol.
Metabolism
[edit]The enzyme cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylate dehydrogenase uses cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylate and NAD(P)+ to produce 4-methylcatechol, NADH, NADPH and CO2.[1]
Related compounds
[edit]Members of the monocot subfamily Amaryllidoideae present a unique type of alkaloids, the norbelladine alkaloids, which are 4-methylcatechol derivatives combined with tyrosine. They are responsible for the poisonous properties of a number of the species. Over 200 different chemical structures of these compounds are known, of which 79 or more are known from Narcissus alone.[2]
Production and occurrence
[edit]The brand of low-temperature coke used as a smokeless fuel Coalite obtains homocatechol from ammoniacal liquor by solvent extraction, distillation and crystallisation.[citation needed]
Being structurally related to lignans, it is contributes to the aerosol generate by combustion of wood.[4]
It is a component of castoreum, the exudate from the castor sacs of the mature beaver.[5]
See also
[edit]References
[edit]- ^ Whited GM, McCombie WR, Kwart LD, Gibson DT (1986). "Identification of cis-diols as intermediates in the oxidation of aromatic acids by a strain of Pseudomonas putida that contains a TOL plasmid". J. Bacteriol. 166 (3): 1028–39. doi:10.1128/jb.166.3.1028-1039.1986. PMC 215228. PMID 3711022.
- ^ Martin, S.F. 1987. The Amaryllidaceae Alkaloids. In.: Arnold Brossi (ed.) The Alkaloids, Chapter 3. Academic Press.
- ^ Panten J, Surburg H (2016). "Flavors and Fragrances, 3. Aromatic and Heterocyclic Compounds". Ullmann's Encyclopedia of Industrial Chemistry. pp. 1–45. doi:10.1002/14356007.t11_t02. ISBN 978-3-527-30673-2.
- ^ Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit, BRT (1998). "Sources of Fine Organic Aerosol. 9. Pine, Oak, and Synthetic Log Combustion in Residential Fireplaces". Environmental Science & Technology. 32 (1): 13–22. Bibcode:1998EnST...32...13R. doi:10.1021/es960930b.
- ^ Pheromonal activity of single castoreum constituents in beaver,Castor canadensis., Müller-Schwarze, D and Houlihan, P.W., Journal of Chemical Ecology, April 1991, Volume 17, Number 4, Springer Netherlands, doi:10.1007/BF00994195