In Umbral calculus , the Bernoulli umbra B − {\displaystyle B_{-}} is an umbra , a formal symbol, defined by the relation eval B − n = B n − {\displaystyle \operatorname {eval} B_{-}^{n}=B_{n}^{-}} , where eval {\displaystyle \operatorname {eval} } is the index-lowering operator,[ 1] also known as evaluation operator [ 2] and B n − {\displaystyle B_{n}^{-}} are Bernoulli numbers , called moments of the umbra.[ 3] A similar umbra, defined as eval B + n = B n + {\displaystyle \operatorname {eval} B_{+}^{n}=B_{n}^{+}} , where B 1 + = 1 / 2 {\displaystyle B_{1}^{+}=1/2} is also often used and sometimes called Bernoulli umbra as well. They are related by equality B + = B − + 1 {\displaystyle B_{+}=B_{-}+1} . Along with the Euler umbra , Bernoulli umbra is one of the most important umbras.
In Levi-Civita field , Bernoulli umbras can be represented by elements with power series B − = ε − 1 − 1 2 − ε 24 + 3 ε 3 640 − 1525 ε 5 580608 + ⋯ {\displaystyle B_{-}=\varepsilon ^{-1}-{\frac {1}{2}}-{\frac {\varepsilon }{24}}+{\frac {3\varepsilon ^{3}}{640}}-{\frac {1525\varepsilon ^{5}}{580608}}+\dotsb } and B + = ε − 1 + 1 2 − ε 24 + 3 ε 3 640 − 1525 ε 5 580608 + ⋯ {\displaystyle B_{+}=\varepsilon ^{-1}+{\frac {1}{2}}-{\frac {\varepsilon }{24}}+{\frac {3\varepsilon ^{3}}{640}}-{\frac {1525\varepsilon ^{5}}{580608}}+\dotsb } , with lowering index operator corresponding to taking the coefficient of 1 = ε 0 {\displaystyle 1=\varepsilon ^{0}} of the power series. The numerators of the terms are given in OEIS A118050[ 4] and the denominators are in OEIS A118051.[ 5] Since the coefficients of ε − 1 {\displaystyle \varepsilon ^{-1}} are non-zero, the both are infinitely large numbers, B − {\displaystyle B_{-}} being infinitely close (but not equal, a bit smaller) to ε − 1 − 1 / 2 {\displaystyle \varepsilon ^{-1}-1/2} and B + {\displaystyle B_{+}} being infinitely close (a bit smaller) to ε − 1 + 1 / 2 {\displaystyle \varepsilon ^{-1}+1/2} .
In Hardy fields (which are generalizations of Levi-Civita field) umbra B + {\displaystyle B_{+}} corresponds to the germ at infinity of the function ψ − 1 ( ln x ) {\displaystyle \psi ^{-1}(\ln x)} while B − {\displaystyle B_{-}} corresponds to the germ at infinity of ψ − 1 ( ln x ) − 1 {\displaystyle \psi ^{-1}(\ln x)-1} , where ψ − 1 ( x ) {\displaystyle \psi ^{-1}(x)} is inverse digamma function .
Plot of the function ψ − 1 ( ln ( x ) ) {\displaystyle \psi ^{-1}(\ln(x))} , whose germ at positive infinity corresponds to B + {\displaystyle B_{+}} . Since Bernoulli polynomials is a generalization of Bernoulli numbers, exponentiation of Bernoulli umbra can be expressed via Bernoulli polynomials :
eval ( B − + a ) n = B n ( a ) , {\displaystyle \operatorname {eval} (B_{-}+a)^{n}=B_{n}(a),} where a {\displaystyle a} is a real or complex number. This can be further generalized using Hurwitz Zeta function :
eval ( B − + a ) p = − p ζ ( 1 − p , a ) . {\displaystyle \operatorname {eval} (B_{-}+a)^{p}=-p\zeta (1-p,a).} From the Riemann functional equation for Zeta function it follows that
eval B + − p = eval B + p + 1 2 p π p + 1 sin ( π p / 2 ) Γ ( p ) ( p + 1 ) {\displaystyle \operatorname {eval} \,B_{+}^{-p}=\operatorname {eval} {\frac {B_{+}^{p+1}2^{p}\pi ^{p+1}}{\sin(\pi p/2)\Gamma (p)(p+1)}}} Since B 1 + = 1 / 2 {\displaystyle B_{1}^{+}=1/2} and B 1 − = − 1 / 2 {\displaystyle B_{1}^{-}=-1/2} are the only two members of the sequences B n + {\displaystyle B_{n}^{+}} and B n − {\displaystyle B_{n}^{-}} that differ, the following rule follows for any analytic function f ( x ) {\displaystyle f(x)} :
f ′ ( x ) = eval ( f ( B + + x ) − f ( B − + x ) ) = eval Δ f ( B − + x ) {\displaystyle f'(x)=\operatorname {eval} (f(B_{+}+x)-f(B_{-}+x))=\operatorname {eval} \Delta f(B_{-}+x)} Elementary functions of Bernoulli umbra [ edit ] As a general rule, the following formula holds for any analytic function f ( x ) {\displaystyle f(x)} :
eval f ( B − + x ) = D e D − 1 f ( x ) . {\displaystyle \operatorname {eval} f(B_{-}+x)={\frac {D}{e^{D}-1}}f(x).} This allows to derive expressions for elementary functions of Bernoulli umbra.
eval cos ( z B − ) = eval cos ( z B + ) = z 2 cot ( z 2 ) {\displaystyle \operatorname {eval} \cos(zB_{-})=\operatorname {eval} \cos(zB_{+})={\frac {z}{2}}\cot \left({\frac {z}{2}}\right)} eval cosh ( z B − ) = eval cosh ( z B + ) = z 2 coth ( z 2 ) {\displaystyle \operatorname {eval} \cosh(zB_{-})=\operatorname {eval} \cosh(zB_{+})={\frac {z}{2}}\coth \left({\frac {z}{2}}\right)} eval e z B − = z e z − 1 {\displaystyle \operatorname {eval} e^{zB_{-}}={\frac {z}{e^{z}-1}}} eval ln ( B − + z ) = ψ ( z ) {\displaystyle \operatorname {eval} \ln(B_{-}+z)=\psi (z)} Particularly,
eval ln B + = − γ {\displaystyle \operatorname {eval} \ln B_{+}=-\gamma } [ 6] eval 1 π ln ( B + − z π B − + z π ) = cot z {\displaystyle \operatorname {eval} {\frac {1}{\pi }}\ln \left({\frac {B_{+}-{\frac {z}{\pi }}}{B_{-}+{\frac {z}{\pi }}}}\right)=\cot z} eval 1 π ln ( B − + 1 / 2 + z π B − + 1 / 2 − z π ) = tan z {\displaystyle \operatorname {eval} {\frac {1}{\pi }}\ln \left({\frac {B_{-}+1/2+{\frac {z}{\pi }}}{B_{-}+1/2-{\frac {z}{\pi }}}}\right)=\tan z} eval cos ( a B − + x ) = a 2 csc ( a 2 ) cos ( a 2 − x ) {\displaystyle \operatorname {eval} \cos(aB_{-}+x)={\frac {a}{2}}\csc \left({\frac {a}{2}}\right)\cos \left({\frac {a}{2}}-x\right)} eval sin ( a B − + x ) = a 2 cot ( a 2 ) sin x − a 2 cos x {\displaystyle \operatorname {eval} \sin(aB_{-}+x)={\frac {a}{2}}\cot \left({\frac {a}{2}}\right)\sin x-{\frac {a}{2}}\cos x} Particularly,
eval sin B − = − 1 / 2 {\displaystyle \operatorname {eval} \sin B_{-}=-1/2} , eval sin B + = 1 / 2 {\displaystyle \operatorname {eval} \sin B_{+}=1/2} , Relations between exponential and logarithmic functions [ edit ] Bernoulli umbra allows to establish relations between exponential, trigonometric and hyperbolic functions on one side and logarithms, inverse trigonometric and inverse hyperbolic functions on the other side in closed form:
eval ( cosh ( 2 x B ± ) − 1 ) = eval x π artanh ( x π B ± ) = eval x π arcoth ( π B ± x ) = x coth ( x ) − 1 {\displaystyle \operatorname {eval} \left(\cosh \left(2xB_{\pm }\right)-1\right)=\operatorname {eval} {\frac {x}{\pi }}\operatorname {artanh} \left({\frac {x}{\pi B_{\pm }}}\right)=\operatorname {eval} {\frac {x}{\pi }}\operatorname {arcoth} \left({\frac {\pi B_{\pm }}{x}}\right)=x\coth(x)-1} eval z 2 π ln ( B + − z 2 π B − + z 2 π ) = eval cos ( z B − ) = eval cos ( z B + ) = z 2 cot ( z 2 ) {\displaystyle \operatorname {eval} {\frac {z}{2\pi }}\ln \left({\frac {B_{+}-{\frac {z}{2\pi }}}{B_{-}+{\frac {z}{2\pi }}}}\right)=\operatorname {eval} \cos(zB_{-})=\operatorname {eval} \cos(zB_{+})={\frac {z}{2}}\cot \left({\frac {z}{2}}\right)} ^ Taylor, Brian D. (1998). "Difference Equations via the Classical Umbral Calculus". Mathematical Essays in honor of Gian-Carlo Rota . pp. 397–411. CiteSeerX 10.1.1.11.7516 . doi :10.1007/978-1-4612-4108-9_21 . ISBN 978-1-4612-8656-1 . ^ Di Nardo, E. (February 14, 2022). "A new approach to Sheppard's corrections". arXiv :1004.4989 [math.ST ]. ^ "The classical umbral calculus: Sheffer sequences" (PDF) . Lecture Notes of Seminario Interdisciplinare di Matematica . 8 : 101–130. 2009. ^ Sloane, N. J. A. (ed.), "Sequence A118050" , The On-Line Encyclopedia of Integer Sequences , OEIS Foundation ^ Sloane, N. J. A. (ed.), "Sequence A118051" , The On-Line Encyclopedia of Integer Sequences , OEIS Foundation ^ Yu, Yiping (2010). "Bernoulli Operator and Riemann's Zeta Function". arXiv :1011.3352 [math.NT ].