The cross-correlation matrix of two random vectors is a matrix containing as elements the cross-correlations of all pairs of elements of the random vectors. The cross-correlation matrix is used in various digital signal processing algorithms.
For two random vectors X = ( X 1 , … , X m ) T {\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{m})^{\rm {T}}} and Y = ( Y 1 , … , Y n ) T {\displaystyle \mathbf {Y} =(Y_{1},\ldots ,Y_{n})^{\rm {T}}} , each containing random elements whose expected value and variance exist, the cross-correlation matrix of X {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } is defined by[ 1] : p.337
R X Y ≜ E [ X Y T ] {\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {Y} }\triangleq \ \operatorname {E} [\mathbf {X} \mathbf {Y} ^{\rm {T}}]}
and has dimensions m × n {\displaystyle m\times n} . Written component-wise:
R X Y = [ E [ X 1 Y 1 ] E [ X 1 Y 2 ] ⋯ E [ X 1 Y n ] E [ X 2 Y 1 ] E [ X 2 Y 2 ] ⋯ E [ X 2 Y n ] ⋮ ⋮ ⋱ ⋮ E [ X m Y 1 ] E [ X m Y 2 ] ⋯ E [ X m Y n ] ] {\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {Y} }={\begin{bmatrix}\operatorname {E} [X_{1}Y_{1}]&\operatorname {E} [X_{1}Y_{2}]&\cdots &\operatorname {E} [X_{1}Y_{n}]\\\\\operatorname {E} [X_{2}Y_{1}]&\operatorname {E} [X_{2}Y_{2}]&\cdots &\operatorname {E} [X_{2}Y_{n}]\\\\\vdots &\vdots &\ddots &\vdots \\\\\operatorname {E} [X_{m}Y_{1}]&\operatorname {E} [X_{m}Y_{2}]&\cdots &\operatorname {E} [X_{m}Y_{n}]\\\\\end{bmatrix}}} The random vectors X {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } need not have the same dimension, and either might be a scalar value.
For example, if X = ( X 1 , X 2 , X 3 ) T {\displaystyle \mathbf {X} =\left(X_{1},X_{2},X_{3}\right)^{\rm {T}}} and Y = ( Y 1 , Y 2 ) T {\displaystyle \mathbf {Y} =\left(Y_{1},Y_{2}\right)^{\rm {T}}} are random vectors, then R X Y {\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {Y} }} is a 3 × 2 {\displaystyle 3\times 2} matrix whose ( i , j ) {\displaystyle (i,j)} -th entry is E [ X i Y j ] {\displaystyle \operatorname {E} [X_{i}Y_{j}]} .
Complex random vectors [ edit ] If Z = ( Z 1 , … , Z m ) T {\displaystyle \mathbf {Z} =(Z_{1},\ldots ,Z_{m})^{\rm {T}}} and W = ( W 1 , … , W n ) T {\displaystyle \mathbf {W} =(W_{1},\ldots ,W_{n})^{\rm {T}}} are complex random vectors , each containing random variables whose expected value and variance exist, the cross-correlation matrix of Z {\displaystyle \mathbf {Z} } and W {\displaystyle \mathbf {W} } is defined by
R Z W ≜ E [ Z W H ] {\displaystyle \operatorname {R} _{\mathbf {Z} \mathbf {W} }\triangleq \ \operatorname {E} [\mathbf {Z} \mathbf {W} ^{\rm {H}}]} where H {\displaystyle {}^{\rm {H}}} denotes Hermitian transposition .
Two random vectors X = ( X 1 , … , X m ) T {\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{m})^{\rm {T}}} and Y = ( Y 1 , … , Y n ) T {\displaystyle \mathbf {Y} =(Y_{1},\ldots ,Y_{n})^{\rm {T}}} are called uncorrelated if
E [ X Y T ] = E [ X ] E [ Y ] T . {\displaystyle \operatorname {E} [\mathbf {X} \mathbf {Y} ^{\rm {T}}]=\operatorname {E} [\mathbf {X} ]\operatorname {E} [\mathbf {Y} ]^{\rm {T}}.} They are uncorrelated if and only if their cross-covariance matrix K X Y {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }} matrix is zero.
In the case of two complex random vectors Z {\displaystyle \mathbf {Z} } and W {\displaystyle \mathbf {W} } they are called uncorrelated if
E [ Z W H ] = E [ Z ] E [ W ] H {\displaystyle \operatorname {E} [\mathbf {Z} \mathbf {W} ^{\rm {H}}]=\operatorname {E} [\mathbf {Z} ]\operatorname {E} [\mathbf {W} ]^{\rm {H}}} and
E [ Z W T ] = E [ Z ] E [ W ] T . {\displaystyle \operatorname {E} [\mathbf {Z} \mathbf {W} ^{\rm {T}}]=\operatorname {E} [\mathbf {Z} ]\operatorname {E} [\mathbf {W} ]^{\rm {T}}.} Relation to the cross-covariance matrix [ edit ] The cross-correlation is related to the cross-covariance matrix as follows:
K X Y = E [ ( X − E [ X ] ) ( Y − E [ Y ] ) T ] = R X Y − E [ X ] E [ Y ] T {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }=\operatorname {E} [(\mathbf {X} -\operatorname {E} [\mathbf {X} ])(\mathbf {Y} -\operatorname {E} [\mathbf {Y} ])^{\rm {T}}]=\operatorname {R} _{\mathbf {X} \mathbf {Y} }-\operatorname {E} [\mathbf {X} ]\operatorname {E} [\mathbf {Y} ]^{\rm {T}}} Respectively for complex random vectors: K Z W = E [ ( Z − E [ Z ] ) ( W − E [ W ] ) H ] = R Z W − E [ Z ] E [ W ] H {\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {W} }=\operatorname {E} [(\mathbf {Z} -\operatorname {E} [\mathbf {Z} ])(\mathbf {W} -\operatorname {E} [\mathbf {W} ])^{\rm {H}}]=\operatorname {R} _{\mathbf {Z} \mathbf {W} }-\operatorname {E} [\mathbf {Z} ]\operatorname {E} [\mathbf {W} ]^{\rm {H}}} ^ Gubner, John A. (2006). Probability and Random Processes for Electrical and Computer Engineers . Cambridge University Press. ISBN 978-0-521-86470-1 . Hayes, Monson H., Statistical Digital Signal Processing and Modeling , John Wiley & Sons, Inc., 1996. ISBN 0-471-59431-8 . Solomon W. Golomb, and Guang Gong . Signal design for good correlation: for wireless communication, cryptography, and radar . Cambridge University Press, 2005. M. Soltanalian. Signal Design for Active Sensing and Communications . Uppsala Dissertations from the Faculty of Science and Technology (printed by Elanders Sverige AB), 2014.