The Gent hyperelastic material model [ 1] is a phenomenological model of rubber elasticity that is based on the concept of limiting chain extensibility. In this model, the strain energy density function is designed such that it has a singularity when the first invariant of the left Cauchy-Green deformation tensor reaches a limiting value I m {\displaystyle I_{m}} .
The strain energy density function for the Gent model is [ 1]
W = − μ J m 2 ln ( 1 − I 1 − 3 J m ) {\displaystyle W=-{\cfrac {\mu J_{m}}{2}}\ln \left(1-{\cfrac {I_{1}-3}{J_{m}}}\right)} where μ {\displaystyle \mu } is the shear modulus and J m = I m − 3 {\displaystyle J_{m}=I_{m}-3} .
In the limit where J m → ∞ {\displaystyle J_{m}\rightarrow \infty } , the Gent model reduces to the Neo-Hookean solid model. This can be seen by expressing the Gent model in the form
W = − μ 2 x ln [ 1 − ( I 1 − 3 ) x ] ; x := 1 J m {\displaystyle W=-{\cfrac {\mu }{2x}}\ln \left[1-(I_{1}-3)x\right]~;~~x:={\cfrac {1}{J_{m}}}} A Taylor series expansion of ln [ 1 − ( I 1 − 3 ) x ] {\displaystyle \ln \left[1-(I_{1}-3)x\right]} around x = 0 {\displaystyle x=0} and taking the limit as x → 0 {\displaystyle x\rightarrow 0} leads to
W = μ 2 ( I 1 − 3 ) {\displaystyle W={\cfrac {\mu }{2}}(I_{1}-3)} which is the expression for the strain energy density of a Neo-Hookean solid.
Several compressible versions of the Gent model have been designed. One such model has the form[ 2] (the below strain energy function yields a non zero hydrostatic stress at no deformation, refer[ 3] for compressible Gent models).
W = − μ J m 2 ln ( 1 − I 1 − 3 J m ) + κ 2 ( J 2 − 1 2 − ln J ) 4 {\displaystyle W=-{\cfrac {\mu J_{m}}{2}}\ln \left(1-{\cfrac {I_{1}-3}{J_{m}}}\right)+{\cfrac {\kappa }{2}}\left({\cfrac {J^{2}-1}{2}}-\ln J\right)^{4}} where J = det ( F ) {\displaystyle J=\det({\boldsymbol {F}})} , κ {\displaystyle \kappa } is the bulk modulus , and F {\displaystyle {\boldsymbol {F}}} is the deformation gradient .
Consistency condition [ edit ] We may alternatively express the Gent model in the form
W = C 0 ln ( 1 − I 1 − 3 J m ) {\displaystyle W=C_{0}\ln \left(1-{\cfrac {I_{1}-3}{J_{m}}}\right)} For the model to be consistent with linear elasticity , the following condition has to be satisfied:
2 ∂ W ∂ I 1 ( 3 ) = μ {\displaystyle 2{\cfrac {\partial W}{\partial I_{1}}}(3)=\mu } where μ {\displaystyle \mu } is the shear modulus of the material. Now, at I 1 = 3 ( λ i = λ j = 1 ) {\displaystyle I_{1}=3(\lambda _{i}=\lambda _{j}=1)} ,
∂ W ∂ I 1 = − C 0 J m {\displaystyle {\cfrac {\partial W}{\partial I_{1}}}=-{\cfrac {C_{0}}{J_{m}}}} Therefore, the consistency condition for the Gent model is
− 2 C 0 J m = μ ⟹ C 0 = − μ J m 2 {\displaystyle -{\cfrac {2C_{0}}{J_{m}}}=\mu \,\qquad \implies \qquad C_{0}=-{\cfrac {\mu J_{m}}{2}}} The Gent model assumes that J m ≫ 1 {\displaystyle J_{m}\gg 1}
The Cauchy stress for the incompressible Gent model is given by
σ = − p I + 2 ∂ W ∂ I 1 B = − p I + μ J m J m − I 1 + 3 B {\displaystyle {\boldsymbol {\sigma }}=-p~{\boldsymbol {\mathit {I}}}+2~{\cfrac {\partial W}{\partial I_{1}}}~{\boldsymbol {B}}=-p~{\boldsymbol {\mathit {I}}}+{\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}~{\boldsymbol {B}}} Stress-strain curves under uniaxial extension for Gent model compared with various hyperelastic material models. For uniaxial extension in the n 1 {\displaystyle \mathbf {n} _{1}} -direction, the principal stretches are λ 1 = λ , λ 2 = λ 3 {\displaystyle \lambda _{1}=\lambda ,~\lambda _{2}=\lambda _{3}} . From incompressibility λ 1 λ 2 λ 3 = 1 {\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1} . Hence λ 2 2 = λ 3 2 = 1 / λ {\displaystyle \lambda _{2}^{2}=\lambda _{3}^{2}=1/\lambda } . Therefore,
I 1 = λ 1 2 + λ 2 2 + λ 3 2 = λ 2 + 2 λ . {\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=\lambda ^{2}+{\cfrac {2}{\lambda }}~.} The left Cauchy-Green deformation tensor can then be expressed as
B = λ 2 n 1 ⊗ n 1 + 1 λ ( n 2 ⊗ n 2 + n 3 ⊗ n 3 ) . {\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+{\cfrac {1}{\lambda }}~(\mathbf {n} _{2}\otimes \mathbf {n} _{2}+\mathbf {n} _{3}\otimes \mathbf {n} _{3})~.} If the directions of the principal stretches are oriented with the coordinate basis vectors, we have
σ 11 = − p + λ 2 μ J m J m − I 1 + 3 ; σ 22 = − p + μ J m λ ( J m − I 1 + 3 ) = σ 33 . {\displaystyle \sigma _{11}=-p+{\cfrac {\lambda ^{2}\mu J_{m}}{J_{m}-I_{1}+3}}~;~~\sigma _{22}=-p+{\cfrac {\mu J_{m}}{\lambda (J_{m}-I_{1}+3)}}=\sigma _{33}~.} If σ 22 = σ 33 = 0 {\displaystyle \sigma _{22}=\sigma _{33}=0} , we have
p = μ J m λ ( J m − I 1 + 3 ) . {\displaystyle p={\cfrac {\mu J_{m}}{\lambda (J_{m}-I_{1}+3)}}~.} Therefore,
σ 11 = ( λ 2 − 1 λ ) ( μ J m J m − I 1 + 3 ) . {\displaystyle \sigma _{11}=\left(\lambda ^{2}-{\cfrac {1}{\lambda }}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~.} The engineering strain is λ − 1 {\displaystyle \lambda -1\,} . The engineering stress is
T 11 = σ 11 / λ = ( λ − 1 λ 2 ) ( μ J m J m − I 1 + 3 ) . {\displaystyle T_{11}=\sigma _{11}/\lambda =\left(\lambda -{\cfrac {1}{\lambda ^{2}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~.} Equibiaxial extension [ edit ] For equibiaxial extension in the n 1 {\displaystyle \mathbf {n} _{1}} and n 2 {\displaystyle \mathbf {n} _{2}} directions, the principal stretches are λ 1 = λ 2 = λ {\displaystyle \lambda _{1}=\lambda _{2}=\lambda \,} . From incompressibility λ 1 λ 2 λ 3 = 1 {\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1} . Hence λ 3 = 1 / λ 2 {\displaystyle \lambda _{3}=1/\lambda ^{2}\,} . Therefore,
I 1 = λ 1 2 + λ 2 2 + λ 3 2 = 2 λ 2 + 1 λ 4 . {\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=2~\lambda ^{2}+{\cfrac {1}{\lambda ^{4}}}~.} The left Cauchy-Green deformation tensor can then be expressed as
B = λ 2 n 1 ⊗ n 1 + λ 2 n 2 ⊗ n 2 + 1 λ 4 n 3 ⊗ n 3 . {\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+\lambda ^{2}~\mathbf {n} _{2}\otimes \mathbf {n} _{2}+{\cfrac {1}{\lambda ^{4}}}~\mathbf {n} _{3}\otimes \mathbf {n} _{3}~.} If the directions of the principal stretches are oriented with the coordinate basis vectors, we have
σ 11 = ( λ 2 − 1 λ 4 ) ( μ J m J m − I 1 + 3 ) = σ 22 . {\displaystyle \sigma _{11}=\left(\lambda ^{2}-{\cfrac {1}{\lambda ^{4}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)=\sigma _{22}~.} The engineering strain is λ − 1 {\displaystyle \lambda -1\,} . The engineering stress is
T 11 = σ 11 λ = ( λ − 1 λ 5 ) ( μ J m J m − I 1 + 3 ) = T 22 . {\displaystyle T_{11}={\cfrac {\sigma _{11}}{\lambda }}=\left(\lambda -{\cfrac {1}{\lambda ^{5}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)=T_{22}~.} Planar extension tests are carried out on thin specimens which are constrained from deforming in one direction. For planar extension in the n 1 {\displaystyle \mathbf {n} _{1}} directions with the n 3 {\displaystyle \mathbf {n} _{3}} direction constrained, the principal stretches are λ 1 = λ , λ 3 = 1 {\displaystyle \lambda _{1}=\lambda ,~\lambda _{3}=1} . From incompressibility λ 1 λ 2 λ 3 = 1 {\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1} . Hence λ 2 = 1 / λ {\displaystyle \lambda _{2}=1/\lambda \,} . Therefore,
I 1 = λ 1 2 + λ 2 2 + λ 3 2 = λ 2 + 1 λ 2 + 1 . {\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=\lambda ^{2}+{\cfrac {1}{\lambda ^{2}}}+1~.} The left Cauchy-Green deformation tensor can then be expressed as
B = λ 2 n 1 ⊗ n 1 + 1 λ 2 n 2 ⊗ n 2 + n 3 ⊗ n 3 . {\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+{\cfrac {1}{\lambda ^{2}}}~\mathbf {n} _{2}\otimes \mathbf {n} _{2}+\mathbf {n} _{3}\otimes \mathbf {n} _{3}~.} If the directions of the principal stretches are oriented with the coordinate basis vectors, we have
σ 11 = ( λ 2 − 1 λ 2 ) ( μ J m J m − I 1 + 3 ) ; σ 22 = 0 ; σ 33 = ( 1 − 1 λ 2 ) ( μ J m J m − I 1 + 3 ) . {\displaystyle \sigma _{11}=\left(\lambda ^{2}-{\cfrac {1}{\lambda ^{2}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~;~~\sigma _{22}=0~;~~\sigma _{33}=\left(1-{\cfrac {1}{\lambda ^{2}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~.} The engineering strain is λ − 1 {\displaystyle \lambda -1\,} . The engineering stress is
T 11 = σ 11 λ = ( λ − 1 λ 3 ) ( μ J m J m − I 1 + 3 ) . {\displaystyle T_{11}={\cfrac {\sigma _{11}}{\lambda }}=\left(\lambda -{\cfrac {1}{\lambda ^{3}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~.} The deformation gradient for a simple shear deformation has the form[ 4]
F = 1 + γ e 1 ⊗ e 2 {\displaystyle {\boldsymbol {F}}={\boldsymbol {1}}+\gamma ~\mathbf {e} _{1}\otimes \mathbf {e} _{2}} where e 1 , e 2 {\displaystyle \mathbf {e} _{1},\mathbf {e} _{2}} are reference orthonormal basis vectors in the plane of deformation and the shear deformation is given by
γ = λ − 1 λ ; λ 1 = λ ; λ 2 = 1 λ ; λ 3 = 1 {\displaystyle \gamma =\lambda -{\cfrac {1}{\lambda }}~;~~\lambda _{1}=\lambda ~;~~\lambda _{2}={\cfrac {1}{\lambda }}~;~~\lambda _{3}=1} In matrix form, the deformation gradient and the left Cauchy-Green deformation tensor may then be expressed as
F = [ 1 γ 0 0 1 0 0 0 1 ] ; B = F ⋅ F T = [ 1 + γ 2 γ 0 γ 1 0 0 0 1 ] {\displaystyle {\boldsymbol {F}}={\begin{bmatrix}1&\gamma &0\\0&1&0\\0&0&1\end{bmatrix}}~;~~{\boldsymbol {B}}={\boldsymbol {F}}\cdot {\boldsymbol {F}}^{T}={\begin{bmatrix}1+\gamma ^{2}&\gamma &0\\\gamma &1&0\\0&0&1\end{bmatrix}}} Therefore,
I 1 = t r ( B ) = 3 + γ 2 {\displaystyle I_{1}=\mathrm {tr} ({\boldsymbol {B}})=3+\gamma ^{2}} and the Cauchy stress is given by
σ = − p 1 + μ J m J m − γ 2 B {\displaystyle {\boldsymbol {\sigma }}=-p~{\boldsymbol {\mathit {1}}}+{\cfrac {\mu J_{m}}{J_{m}-\gamma ^{2}}}~{\boldsymbol {B}}} In matrix form,
σ = [ − p + μ J m ( 1 + γ 2 ) J m − γ 2 μ J m γ J m − γ 2 0 μ J m γ J m − γ 2 − p + μ J m J m − γ 2 0 0 0 − p + μ J m J m − γ 2 ] {\displaystyle {\boldsymbol {\sigma }}={\begin{bmatrix}-p+{\cfrac {\mu J_{m}(1+\gamma ^{2})}{J_{m}-\gamma ^{2}}}&{\cfrac {\mu J_{m}\gamma }{J_{m}-\gamma ^{2}}}&0\\{\cfrac {\mu J_{m}\gamma }{J_{m}-\gamma ^{2}}}&-p+{\cfrac {\mu J_{m}}{J_{m}-\gamma ^{2}}}&0\\0&0&-p+{\cfrac {\mu J_{m}}{J_{m}-\gamma ^{2}}}\end{bmatrix}}} ^ a b Gent, A.N., 1996, A new constitutive relation for rubber , Rubber Chemistry Tech., 69, pp. 59-61. ^ Mac Donald, B. J., 2007, Practical stress analysis with finite elements , Glasnevin, Ireland. ^ Horgan, Cornelius O.; Saccomandi, Giuseppe (2004-11-01). "Constitutive Models for Compressible Nonlinearly Elastic Materials with Limiting Chain Extensibility" . Journal of Elasticity . 77 (2): 123–138. doi :10.1007/s10659-005-4408-x . ISSN 1573-2681 . ^ Ogden, R. W., 1984, Non-linear elastic deformations , Dover.