Lanthanum decahydride

Lanthanum decahydride
Identifiers
3D model (JSmol)
  • InChI=1S/La.10H
    Key: WKJDXOLLSPZSBN-UHFFFAOYSA-N
  • [LaH10]
Properties
H10La
Molar mass 148.985 g·mol−1
Structure
Cubic
Fm3m
a = 5.1019(5) Å
at 150 GPa
132.80(4) Å3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Lanthanum decahydride is a polyhydride or superhydride compound of lanthanum and hydrogen (LaH10) that has shown evidence of being a high-temperature superconductor. It was the first metal superhydride to be theoretically predicted,[2][3] synthesized,[4] and experimentally confirmed[5] to superconduct at near room-temperatures. It has a superconducting transition temperature TC around 250 K (−23 °C; −10 °F) at a pressure of 150 gigapascals (22×10^6 psi), and its synthesis required pressures above approximately 160 gigapascals (23×10^6 psi).[6][7]

Synopsis

[edit]

Since its discovery in 2019,[5] the superconducting properties of LaH10 and other lanthanum-based superhydrides have been experimentally confirmed in multiple independent experiments.[8][9][10][11] The compound exhibits a Meissner effect below the superconducting transition temperature.[12] A cubic form can be synthesized at 1,000 K (730 °C; 1,340 °F),[6] and a hexagonal crystal structure can be formed at room temperature.[13] Further reports indicate Tc is increased with nitrogen doping,[14] and decreased with the introduction of magnetic impurities.[15]

The cubic form has each lanthanum atom surrounded by 32 hydrogen atoms, which form the vertices of an 18-faced shape called a chamfered cube.[16]

A similar compound, lanthanum boron octahydride, was computationally predicted to be a superconductor at 126 K (−147 °C; −233 °F) and pressure 50 gigapascals (7.3×10^6 psi).[17]

References

[edit]
  1. ^ "Lanthanum decahydride". American Chemical Society.
  2. ^ Peng, Feng; Sun, Ying; Pickard, Chris J.; Needs, Richard J.; Wu, Qiang; Ma, Yanming (2017-09-08). "Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity". Physical Review Letters. 119 (10): 107001. Bibcode:2017PhRvL.119j7001P. doi:10.1103/PhysRevLett.119.107001. PMID 28949166.
  3. ^ Liu, Hanyu; Naumov, Ivan I.; Hoffmann, Roald; Ashcroft, N. W.; Hemley, Russell J. (2017-07-03). "Potential high- T c superconducting lanthanum and yttrium hydrides at high pressure". Proceedings of the National Academy of Sciences. 114 (27): 6990–6995. doi:10.1073/pnas.1704505114. ISSN 0027-8424. PMC 5502634. PMID 28630301.
  4. ^ Geballe, Zachary M.; Liu, Hanyu; Mishra, Ajay K.; Ahart, Muhtar; Somayazulu, Maddury; Meng, Yue; Baldini, Maria; Hemley, Russell J. (2018-01-15). "Synthesis and Stability of Lanthanum Superhydrides". Angewandte Chemie. 130 (3): 696–700. Bibcode:2018AngCh.130..696G. doi:10.1002/ange.201709970. ISSN 0044-8249.
  5. ^ a b Somayazulu, Maddury; Ahart, Muhtar; Mishra, Ajay K.; Geballe, Zachary M.; Baldini, Maria; Meng, Yue; Struzhkin, Viktor V.; Hemley, Russell J. (2019-01-14). "Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures". Physical Review Letters. 122 (2): 027001. arXiv:1808.07695. Bibcode:2019PhRvL.122b7001S. doi:10.1103/PhysRevLett.122.027001. PMID 30720326.
  6. ^ a b Drozdov, A. P.; Kong, P. P.; Minkov, V. S.; Besedin, S. P.; Kuzovnikov, M. A.; Mozaffari, S.; Balicas, L.; Balakirev, F. F.; Graf, D. E.; Prakapenka, V. B.; Greenberg, E.; Knyazev, D. A.; Tkacz, M.; Eremets, M. I. (2019). "Superconductivity at 250 K in lanthanum hydride under high pressures". Nature. 569 (7757): 528–531. arXiv:1812.01561. Bibcode:2019Natur.569..528D. doi:10.1038/s41586-019-1201-8. PMID 31118520. S2CID 119231000.
  7. ^ M. Kostrzewa; K. M. Szczęśniak; A. P. Durajski; R. Szczęśniak (31 January 2020). "From LaH10 to room–temperature superconductors". Scientific Reports. 10 (1): 1592. arXiv:1905.12308. Bibcode:2020NatSR..10.1592K. doi:10.1038/s41598-020-58065-9. PMC 6994605. PMID 32005852.
  8. ^ Drozdov, A. P.; Kong, P. P.; Minkov, V. S.; Besedin, S. P.; Kuzovnikov, M. A.; Mozaffari, S.; Balicas, L.; Balakirev, F. F.; Graf, D. E.; Prakapenka, V. B.; Greenberg, E.; Knyazev, D. A.; Tkacz, M.; Eremets, M. I. (May 2019). "Superconductivity at 250 K in lanthanum hydride under high pressures". Nature. 569 (7757): 528–531. arXiv:1812.01561. Bibcode:2019Natur.569..528D. doi:10.1038/s41586-019-1201-8. ISSN 0028-0836. PMID 31118520. S2CID 119231000.
  9. ^ Hong, Fang; Yang, Liuxiang; Shan, Pengfei; Yang, Pengtao; Liu, Ziyi; Sun, Jianping; Yin, Yunyu; Yu, Xiaohui; Cheng, Jinguang; Zhao, Zhongxian (2020-10-01). "Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures*". Chinese Physics Letters. 37 (10): 107401. Bibcode:2020ChPhL..37j7401H. doi:10.1088/0256-307X/37/10/107401. ISSN 0256-307X. S2CID 250921188.
  10. ^ Semenok, Dmitrii V.; Troyan, Ivan A.; Ivanova, Anna G.; Kvashnin, Alexander G.; Kruglov, Ivan A.; Hanfland, Michael; Sadakov, Andrey V.; Sobolevskiy, Oleg A.; Pervakov, Kirill S.; Lyubutin, Igor S.; Glazyrin, Konstantin V.; Giordano, Nico; Karimov, Denis N.; Vasiliev, Alexander L.; Akashi, Ryosuke (2021-09-01). "Superconductivity at 253 K in lanthanum–yttrium ternary hydrides". Materials Today. 48: 18–28. arXiv:2012.04787. doi:10.1016/j.mattod.2021.03.025. ISSN 1369-7021.
  11. ^ Semenok, Dmitrii V.; Troyan, Ivan A.; Sadakov, Andrey V.; Zhou, Di; Galasso, Michele; Kvashnin, Alexander G.; Ivanova, Anna G.; Kruglov, Ivan A.; Bykov, Alexey A.; Terent'ev, Konstantin Y.; Cherepakhin, Alexander V.; Sobolevskiy, Oleg A.; Pervakov, Kirill S.; Seregin, Alexey Yu.; Helm, Toni (October 2022). "Effect of Magnetic Impurities on Superconductivity in LaH 10". Advanced Materials. 34 (42): e2204038. arXiv:2203.06500. Bibcode:2022AdM....3404038S. doi:10.1002/adma.202204038. ISSN 0935-9648. PMID 35829689. S2CID 247447065.
  12. ^ Eremets, M. I.; Minkov, V. S.; Drozdov, A. P.; Kong, P. P.; Ksenofontov, V.; Shylin, S. I.; Bud'ko, S. L.; Prozorov, R.; Balakirev, F. F.; Sun, Dan; Mozzafari, S.; Balicas, L. (10 January 2022). "High‑Temperature Superconductivity in Hydrides: Experimental Evidence and Details". Journal of Superconductivity and Novel Magnetism. 35 (4): 965–977. arXiv:2201.05137. doi:10.1007/s10948-022-06148-1.
  13. ^ Geballe, Zachary M.; Liu, Hanyu; Mishra, Ajay K.; Ahart, Muhtar; Somayazulu, Maddury; Meng, Yue; Baldini, Maria; Hemley, Russell J. (15 January 2018). "Synthesis and Stability of Lanthanum Superhydrides". Angewandte Chemie International Edition. 57 (3): 688–692. doi:10.1002/anie.201709970. PMID 29193506.
  14. ^ Ge, Yanfeng; Zhang, Fan; Hemley, Russell J. (2021-12-15). "Room-temperature superconductivity in boron- and nitrogen-doped lanthanum superhydride". Physical Review B. 104 (21): 214505. arXiv:2012.13398. Bibcode:2021PhRvB.104u4505G. doi:10.1103/PhysRevB.104.214505. S2CID 229371105.
  15. ^ Sanner, T. (1975-11-18). "Formation of transient complexes in the glutamate dehydrogenase catalyzed reaction". Biochemistry. 14 (23): 5094–5098. doi:10.1021/bi00694a011. ISSN 0006-2960. PMID 39.
  16. ^ "NNNS chemistry blog: Lanthanum decahydride". chem.vander-lingen.nl.
  17. ^ Di Cataldo, Simone; Heil, Christoph; von der Linden, Wolfgang; Boeri, Lilia (2021-07-29). "BH8: Towards high-Tc low-pressure superconductivity in ternary superhydrides". Physical Review B. 104 (2): L020511. arXiv:2102.11227. Bibcode:2021PhRvB.104b0511D. doi:10.1103/PhysRevB.104.L020511. S2CID 242872381.