List of landing ellipses on extraterrestrial bodies

Comparison of landing ellipses of NASA Mars landers in 1997, 2008, 2012, and 2021, respectively.
Shaded ellipses of Skylab's reentry on 1979-07-11. Included for purposes of comparison.
Deorbit of Mir, 23 March 2001. The debris field (in red) is ±1,500 x ±100 km, smaller than predicted due atmospheric reentry being slightly steeper than anticipated
The 150 x 20 km[1] landing footprint of Opportunity rover on Meridiani Planum, Mars in 2004
Suggested landing ellipses for Luna-25. Primary ellipses are 1, 4, 6 and secondary ellipses are 2, 3, 5, 7, 8, 9, 10, 11 and B1, B2.[2]

This is a list of the projected landing zones on extraterrestrial bodies. The size of the ellipse or oval graphically represents statistical degrees of uncertainty, i.e. the confidence level of the landing point, with the center of the ellipse being calculated as the most likely given the plethora of variables.[3] Their accuracy has improved from the early attempts in the 1960s; active research continues in the 21st century.[4][5][6][7]

Ellipse table

[edit]
Mission Country/Agency Destination Date of Impact/Landing Axes Notes
Surveyor 1 United States NASA Moon 1966 50 km[8] Landing error ~18.96 km[9]
Surveyor 3 United States NASA Moon 1967 15.1 x 10.6 km[8] Initial landing ellipse was 30 km, was corrected in-flight after midcourse correction.[8] Landing error ~2.76 km[9]
Apollo 11 United States NASA Moon 1969 18.5 x 4.8 km[10][11] First crewed landing. Landing error ~6.6 km[9]
Apollo 12 United States NASA Moon 1969 ~1 km,[12] or 13.3 x 4.8 km[a][13] Second crewed landing. Landing error ~160 m[9] Landed in ~200 m from Surveyor 3, its target. Landing was very precise and not intended to be closer.[12]
Apollo 14 United States NASA Moon 1971 ~1 km[12]
Apollo 15 United States NASA Moon 1971 ~1 km[12]
Apollo 16 United States NASA Moon 1972 ~1 km[12]
Apollo 17 United States NASA Moon 1972 ~1 km,[12] or 15 x 5 km[14] Last crewed landing. Landing error ~400 m[9]
Viking United States NASA Mars 1976 280 x 100 km[15] Retrorocket
n/a Shoemaker-Levy 9 (comet) Jupiter 1994-07-16 n/a As per IAUC in 1993 May 22; 0.0003 AU (45,000 km) from the center of Jupiter, i.e. within the planet's radius of 0.0005 AU (69,911 km) on 1994 July 25.4. (sic)[16] Actual train of impacts as finally projected occurred beyond Jupiter's limb.[17] Included for purposes of comparison.
Mars Pathfinder United States NASA Mars 1997 200 x 70 km[18] or 200 x 100 km[19][20] Airbags
Mars Polar Lander United States NASA Mars 1999 200 x 20 km[21] Communications failed before landing attempt.
Mars Exploration Rovers United States NASA Mars 2003 150 x 20 km[22] Airbags
Beagle 2 European Union ESA Mars 2003 174 x 106 km[23] Successful landing, communications failure.
Huygens European Union ESA Titan 2005 1200 x 200 km[24][25]
Phoenix United States NASA Mars 2008 100 x 19 km[3] or "70 km long"[26]
Mars Science Laboratory United States NASA Mars 2012 25 x 20 km[18] Sky crane
Chang'e 3 China CNSA Moon 2013 6 x 6 km[9] Landed with a landing error of ~89 m,[9] 2 m targeting precision[12]
Philae European Union ESA 67P/Churyumov–Gerasimenko 2014 0.5 km[27]
Falcon 9 first-stage booster United States SpaceX Earth 2015 ~20 m[28][29] First reusable rocket, and the most precise landing system to date. Included for comparison.
Schiaparelli EDM European Union ESA Mars 2016 100 x 15 km[30][31] Crash landing.
Cassini United States NASA Saturn 2017-09-17 TBD Rotation brought entry area into view.
InSight United States NASA Mars 2018 130 x 27 km[18]
Hayabusa2 Japan JAXA 162173 Ryugu 2018 2 or 3 m[12] Sampling occurred in ~1 m from a target.[12]
OSIRIS-REx United States NASA 101955 Bennu 2020 6.5 m[12] Sampling occurred in ~1 m from a target.[12]
Mars 2020 United States NASA Mars 2021 7.7 x 6.6 km[32] Sky crane. Landed 1.7 km from center of ellipse.[33]
Tianwen-1 China CNSA Mars 2021 56 x 22 km[12][34]
ExoMars 2020 European UnionRussia ESA/Roscosmos Mars 2023 104 x 19 km[35][36][37] or 120 x 19 km[38] Mission postponed until 2028.
Luna 25 Russia Roscosmos Moon 2023-08-19 30 x 15 km[2][39][40] Mission failed before landing attempt.
Chandrayaan-3 India ISRO Moon 2023-08-23 4.5 x 2.5 km[41] or 4 x 2.4 km[42]
OSIRIS-REx return capsule United States NASA Earth 2023-09-24 30 x 80 km,[43] 14 x 58 km,[44] or 12 x 30 km[45] Sample return from an asteroid. Capsule landed ~ 8 km from the center.[45]
Peregrine Mission One United States Astrobotic, Inc. Moon 2024-01-18 24 x 6 km[42][46] First U.S. lunar lander built since Apollo Program (1972). Aborted to Point Nemo.
SLIM Japan JAXA Moon 2024-01-19 100 m[47][42] Dubbed "Moon Sniper" for its accuracy (despite having landed upside-down).[48] Landed ~55 m from target point.[49]
IM-1 Nova-C Odysseus United States NASA Moon 2024-02-22 Landed ~1.5 km from the target.[50]
Cassini retirement, Saturn, 9.4°N 15 W, 15 September 2017, at the southern edge of the North Equatorial Belt (itself approximately 15,000 km wide); the blander Equatorial Zone is immediately below.

See also

[edit]

Notes

[edit]
  1. ^ 7.2 nautical miles (13.3 km) x 2.6 nautical miles (4.8 km) per source

References

[edit]
  1. ^ "Landing Ellipse for the Opportunity Rover Mars mission | Time and Navigation". timeandnavigation.si.edu.
  2. ^ a b Krasilnikov, S. S.; Basilevsky, A. T.; Ivanov, M. A.; Krasilnikov, A. S. (1 March 2021). "Geological and Geomorphological Characteristics of High-Priority Landing Sites for the Luna-Glob Mission". Solar System Research. 55 (2): 83–96. Bibcode:2021SoSyR..55...83K. doi:10.1134/S0038094621010056. ISSN 1608-3423.
  3. ^ a b "Landing ellipses". The Planetary Society.
  4. ^ Zhang, Yuan-Long; Chen, Ke-Jun; Liu, Lu-Hua; Tang, Guo-Jian; Bao, Wei-Min (August 22, 2017). "Rapid generation of landing footprint based on geometry-predicted trajectory". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 231 (10): 1851–1861. doi:10.1177/0954410016662066. S2CID 114089246 – via CrossRef.
  5. ^ "Zeroing in on the Target". NASA Mars Exploration.
  6. ^ Saraf, Amitabh; Leavitt, James; Ferch, Mark; Mease, Kenneth (August 16, 2004). "Landing Footprint Computation for Entry Vehicles". AIAA Guidance, Navigation, and Control Conference and Exhibit. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2004-4774. ISBN 978-1-62410-073-4 – via CrossRef.
  7. ^ Zhang, Yuan-long; Xie, Yu; Xu, Xin (February 1, 2023). "Generation of Landing Footprints for Re-entry Vehicles Based on Lateral Profile Priority". International Journal of Aeronautical and Space Sciences. 24 (1): 261–273. Bibcode:2023IJASS..24..261Z. doi:10.1007/s42405-022-00503-1. S2CID 251945950 – via Springer Link.
  8. ^ a b c "Surveyor III Mission Report" (PDF).
  9. ^ a b c d e f g Li, Shuang; Jiang, Xiuqiang; Tao, Ting (2016). "Guidance Summary and Assessment of the Chang'e-3 Powered Descent and Landing". Journal of Spacecraft and Rockets. 53 (2): 258–277. Bibcode:2016JSpRo..53..258L. doi:10.2514/1.A33208.
  10. ^ Eppler, Dean (2019). "Human Lunar Landing Experience On Project Apollo" (PDF).
  11. ^ Chaikin, Andrew (2007). A Man on the Moon: The Triumphant Story Of The Apollo Space Program. New York: Penguin Group. p. 88. ISBN 978-0-14-311235-8.
  12. ^ a b c d e f g h i j k l Lorenz, Ralph D. (1 January 2023). "Planetary landings with terrain sensing and hazard avoidance: A review". Advances in Space Research. 71 (1): 1–15. Bibcode:2023AdSpR..71....1L. doi:10.1016/j.asr.2022.11.024. ISSN 0273-1177.
  13. ^ "Apollo 12 Image Library". www.nasa.gov.
  14. ^ "The Mystery of Lunar Water Part 2 Instructor Guide" (PDF).
  15. ^ "NASA technology enables precision landing without a pilot". phys.org.
  16. ^ "IAUC 5800: 1993e". www.cbat.eps.harvard.edu.
  17. ^ Watanabe, J.; Rogers, J. (July 1, 1994). "Periodic Comet Shoemaker-Levy 9 (1993e)". International Astronomical Union Circular (6025): 1. Bibcode:1994IAUC.6025....1W – via NASA ADS.
  18. ^ a b c "Zeroing in on the Target". NASA Mars Exploration. Retrieved 22 January 2024.
  19. ^ "MPF Landing Footprint Plots". mars.nasa.gov.
  20. ^ "Mars Pathfinder Landing Ellipses". NASA Jet Propulsion Laboratory (JPL).
  21. ^ "Mars Polar Lander and Deep Space 2 Landing Sites". nssdc.gsfc.nasa.gov.
  22. ^ "Image Gallery: Perseverance Rover - NASA". mars.nasa.gov. Retrieved 22 January 2024.
  23. ^ Bridges, J. C.; Seabrook, A. M.; Rothery, D. A.; Kim, J. R.; Pillinger, C. T.; Sims, M. R.; Golombek, M. P.; Duxbury, T.; Head, J. W.; Haldemann, A. F. C.; Mitchell, K. L.; Muller, J.-P.; Lewis, S. R.; Moncrieff, C.; Wright, I. P.; Grady, M. M.; Morley, J. G. (2003). "Selection of the landing site in Isidis Planitia of Mars probe Beagle 2". Journal of Geophysical Research: Planets. 108 (E1): 5001. Bibcode:2003JGRE..108.5001B. doi:10.1029/2001JE001820.
  24. ^ Lebreton, J. -P.; Matson, D. L. (1997). "1997ESASP1177....5L Page 5". Huygens: Science. 1177: 5. Bibcode:1997ESASP1177....5L.
  25. ^ Lebreton, Jean-Pierre; Witasse, Olivier; Sollazzo, Claudio; Blancquaert, Thierry; Couzin, Patrice; Schipper, Anne-Marie; Jones, Jeremy B.; Matson, Dennis L.; Gurvits, Leonid I.; Atkinson, David H.; Kazeminejad, Bobby; Pérez-Ayúcar, Miguel (December 23, 2005). "An overview of the descent and landing of the Huygens probe on Titan". Nature. 438 (7069): 758–764. Bibcode:2005Natur.438..758L. doi:10.1038/nature04347. PMID 16319826. S2CID 4355742 – via www.nature.com.
  26. ^ "Zeroing in on Mars". Jet Propulsion Laboratory.
  27. ^ Agle, D. C.; Laboratory, Jet Propulsion (October 16, 2014). "A Close Up View of the Primary Landing Site on Comet 67P".
  28. ^ "SpaceX's self-landing rocket is a flying robot that's great at math". Quartz. 21 February 2017. Retrieved 23 January 2024.
  29. ^ Blackmore, Lars (Winter 2016). "Autonomous Precision Landing of Space Rockets" (PDF). The Bridge, National Academy of Engineering. 46 (4): 15–20. ISSN 0737-6278. Archived (PDF) from the original on January 10, 2017. Retrieved January 15, 2017.
  30. ^ Gibney, Elizabeth (October 17, 2016). "Europe and Russia prepare for historic landing on Mars". Nature. doi:10.1038/nature.2016.20812. S2CID 133443172 – via www.nature.com.
  31. ^ "Spotlight on Schiaparelli's landing site". www.esa.int.
  32. ^ "Perseverance Rover Landing Ellipse in Jezero Crater". NASA Mars Exploration. Retrieved 22 January 2024.
  33. ^ Foust, Jeff (February 18, 2021). "Perseverance lands on Mars".
  34. ^ Wu, Bo; Dong, Jie; Wang, Yiran; Rao, Wei; Sun, Zezhou; Li, Zhaojin; Tan, Zhiyun; Chen, Zeyu; Wang, Chuang; Liu, Wai Chung; Chen, Long; Zhu, Jiaming; Li, Hongliang (2022). "Landing Site Selection and Characterization of Tianwen-1 (Zhurong Rover) on Mars". Journal of Geophysical Research: Planets. 127 (4). Bibcode:2022JGRE..12707137W. doi:10.1029/2021je007137.
  35. ^ "ESA - Robotic Exploration of Mars - Choosing the ExoMars 2020 landing site". exploration.esa.int. Retrieved 24 January 2024.
  36. ^ "ExoMars 2020 Landing Map". The Planetary Society. Retrieved 24 January 2024.
  37. ^ Favaro, E. A.; Balme, M. R.; Davis, J. M.; Grindrod, P. M.; Fawdon, P.; Barrett, A. M.; Lewis, S. R. (April 2021). "The Aeolian Environment of the Landing Site for the ExoMars Rosalind Franklin Rover in Oxia Planum, Mars". Journal of Geophysical Research: Planets. 126 (4). Bibcode:2021JGRE..126.6723F. doi:10.1029/2020JE006723. ISSN 2169-9097. Retrieved 24 January 2024.
  38. ^ "ExoMars landing site revealed | News". University of Leicester. 22 November 2018. Retrieved 24 January 2024.
  39. ^ Ivanov, M.A.; Abdrakhimov, A.M.; Basilevsky, A.T.; Demidov, N.E.; Guseva, E.N.; Head, J.W.; Hiesinger, H.; Kohanov, A.A.; Krasilnikov, S.S. (November 2018). "Geological characterization of the three high-priority landing sites for the Luna-Glob mission". Planetary and Space Science. 162: 190–206. Bibcode:2018P&SS..162..190I. doi:10.1016/j.pss.2017.08.004.
  40. ^ Ivanov, M.A.; Hiesinger, H.; Abdrakhimov, A.M.; Basilevsky, A.T.; Head, J.W.; Pasckert, J-H.; Bauch, K.; van der Bogert, C.H.; Gläser, P.; Kohanov, A. (November 2015). "Landing site selection for Luna-Glob mission in crater Boguslawsky". Planetary and Space Science. 117: 45–63. Bibcode:2015P&SS..117...45I. doi:10.1016/j.pss.2015.05.007.
  41. ^ "India's Chandrayaan-3 Will Attempt Soft Lunar Landing | Aviation Week Network". aviationweek.com.
  42. ^ a b c "小型月着陸実証機「SLIM」月着陸へ向けた今後の予定" [Small lunar landing demonstration vehicle "SLIM" Future plans for the moon landing] (PDF). JAXA.
  43. ^ "OSIRIS-REx Mission Profile – OSIRIS-REx | Spaceflight101". Retrieved 24 January 2024.
  44. ^ Warren, Haygen (24 September 2023). "Historic OSIRIS-REx asteroid samples successfully return to Earth". NASASpaceFlight.com. Retrieved 24 January 2024.
  45. ^ a b Foust, Jeff (24 September 2023). "OSIRIS-REx sample capsule lands in Utah". SpaceNews. Retrieved 24 January 2024.
  46. ^ Wattles, Jackie (January 19, 2024). "Astrobotic's Peregrine lunar lander burns up over Pacific Ocean". CNN.
  47. ^ "SLIMの月面ピンポイント着陸技術". 宇宙科学研究所.
  48. ^ McCurry, Justin (26 January 2024). "Japan's 'moon sniper' probe made incredibly accurate landing, but is now upside down". The Guardian. Retrieved 29 February 2024.
  49. ^ "Japan releases image of SLIM spacecraft upside down on moon". Nikkei Asia. Retrieved 7 February 2024.
  50. ^ Foust, Jeff (26 February 2024). "Intuitive Machines expects early end to IM-1 lunar lander mission". SpaceNews. Retrieved 29 February 2024.