List of smallest known stars

This is a list of the smallest known stars, brown dwarfs and stellar remnants, sorted by increasing size. The list is divided into sublists, and contain notable objects up to 350,000 km in radius, or 0.50 R, as well as all red dwarfs smaller than 0.1 R and all neutron stars with accurately measured radii.

0 to 1,000 km

[edit]

Partial list containing stars up to 0.0014 R.

Star name Star radius, kilometres Star class Notes References
SGR J1935+2154 4.35+1.95
−1.35
Magnetar [1]
RX J0720.4−3125 4.50+0.08
−0.09
 – 5.38+0.13
−0.14
Neutron star [2]
LMC X-4 8.301±0.2 Pulsar [3]
Hercules X-1 8.10±0.41 [3]
Centaurus X-3 9.178±0.130 [3]
Vela X-1 9.56±0.0 [3]
HESS J1731-347 10.40+0.86
−0.78
Neutron star Lightest neutron star ever discovered, at a mass of 0.77 M.[4][5] [4]
PSR J0348+0432 A 11–15 Pulsar Has a white dwarf companion. [6]
PSR J0437−4715 >11.1 Most stable known natural clock. [7]
GW170817 A 11.9±0.4 [3]
GW170817 B 11.9±0.4 [3]
PSR J1906+0746 11.99–12.85 [8]
RX J1856.5−3754 12.1+1.3
−1.6
Neutron star Nearest known neutron star. [7]
PSR J2043+1711 12.13–12.96 Pulsar [8]
PSR J1933-6211 12.15–12.98 [8]
PSR J0952–0607 A 12.245+0.685
−0.315
Most massive neutron star so far discovered. [9]
4U 1702−429 12.4±0.4 Neutron star [10]
Vela pulsar 12.52–13.30 Pulsar [8]
PSR J1614−2230 13±2 [3]
PSR J0348+0432 13±2 [3]
PSR J0740+6620 13.7+2.6
−1.5
[11]
ZTF J1406+1422 A 14 Neutron star Has a substellar companion orbiting it closely. [12]

1,000 to 50,000 km

[edit]

Partial list containing stars from 0.0014 to 0.0718 R.

Star name Star radius, kilometres Star radius, R Star class Notes References
HD 49798 B 1,604 0.002306+0.000298
−0.000305
White dwarf [13]
ZTF J1901+1458 2,140 0.003076+0.000230
−0.000331
The most massive white dwarf so far discovered, around 1.3 times more massive than the Sun, close to the mass limit of any white dwarf (the Chandrasekhar limit),[14] and is also a candidate white dwarf pulsar.[15] [14]
RE J0317-853 2,200 0.0032 Also among the most massive white dwarfs. [16]
WD1 2,230 0.00321+0.00040
−0.00036
An ultramassive white dwarf ejected from the Hyades. At a mass of 1.317 M, it is possibly the most massive known white dwarf consistent with single-star evolution.[a] [17]
T Coronae Borealis 3,130 0.0045 Expected to become a nova in the near future, its apparent magnitude may increase up to 2.0.[18] [19]
Janus 3,400 0.004887+0.0010
−0.00086
A white dwarf with a side of hydrogen and another side of helium. [20]
Wolf 1130 B 3,500 0.005 [21]
BPM 37093 4,060 0.00583±0.00008 [22]
IK Pegasi B 4,200 0.006 [23]
U Geminorum A 4,410 0.00634±0.00016 [24]
WD 2317+1830 5,517 0.00793±0.00021 [25]
BW Sculptoris 5,570 0.00800+0.00014
−0.00011
[24]
Sirius B 5,634 0.008098±0.000046 Historically first discovered white dwarf, and the closest example to Earth. [26]
GRW +70 8247
(Gliese 742)
5,960 0.0086 [27][b]
Gamma Cassiopeiae Ab 6,000 0.00862+0.00009
−0.00046
[28]
AN Ursae Majoris 6,300 0.0091 [29]
Pi1 Gruis C 6,300 0.009±0.002 White dwarf or K/F dwarf Status has been inferred only from its mass of 0.86+0.22
−0.20
 M
. If a K-type or F-type dwarf, its radius is expected to be 0.80+0.34
−0.17
 R
.
[30]
Gliese 915 6,750 0.0097±0.0001 White dwarf [31]
LP 658-2 6,778 0.0097 [32]
BZ Ursae Majoris A 6,880 0.00989 [33]
AE Aquarii A 7,000 0.01 First discovered white dwarf pulsar. [34]
AR Scorpii A 7,000 0.01 A white dwarf pulsar. It is often mistaken as the first discovered white dwarf pulsar. [35]
QS Virginis A 6,960 0.010±0.001 [36]
YZ Leonis Minoris 7,000 0.01 [37]
GW Librae 7,170 0.0103+0.0015
−0.0010
[24]
WZ Sagittae 7,300 0.0105±0.0013 [24]
MY Apodis 7,650 0.011±0.001 [38]
OY Carinae A 7,650 0.011 [39]
TMTS J052610.43+593445.1 A 7,650 0.011 [40]
G 99-47 7,650 0.011 [32]
EX Hydrae 7,650 0.011 [41]
RX Andromedae 7,790 0.0112+0.0012
−0.0008
[24]
van Maanen 2 7,860 0.01129 ± 0.00066 Third-closest white dwarf. [42]
Stein 2051 B 7,930 0.0114±0.0004 [43]
G 107-70 B 8,224 0.0118 [32]
Ross 548
(ZZ Ceti)
8,209 0.0118±0.0002 [44]
39 Ceti B
(AY Ceti B)
8,350 0.012 [45]
WD 1054–226 8,350 0.012±0.001 [46]
Gliese 440 8,550 0.0123 ± 0.0009 Fourth-closest white dwarf. [42]
Procyon B 8,585 0.01234±0.00032 Second-closest white dwarf. [47]
GD 165 A 8,627 0.0124±0.0003 [32]
Epsilon2 Arae C 8,627 0.0124±0.0003 [31]
WD 0806−661
(Maru)
8,860 0.0127 Has one confirmed exoplanet. [32]
SW Ursae Majoris 8,975 0.0129+0.0009
−0.0010
[24]
Epsilon Reticuli B 8,975–9,809 0.0129–0.0141 [48]
G 29-38 8,975 0.0129 [42]
AM Herculis A 9,040 0.013+0.0017
−0.0014
[24]
40 Eridani B 9,100 0.01308±0.0002 Fifth-closest white dwarf. [49]
TY Coronae Borealis 9,110 0.0131±0.0014 [31]
HD 147513 B 9,144 0.0131 [42]
GD 358
(V777 Herculis)
9,170 0.0132 [50]
Wolf 489 9,170 0.0132 [32]
GALEX J2339–0424 9,253 0.0133±0.0008 [51]
G 107-70 A 9,412 0.0135 [32]
Wolf 1346 9,670 0.0139±0.0006 [31]
WD 1032+011 A 10,230 0.0147±0.0013 [52]
Gliese 318 10,300 0.0148 [42]
RR Caeli A 10,909 0.01568±0.00009 Has two exoplanets. [53]
HL Tau 76 11,270 0.0162 [54]
PG 1159-035 16,140 or 17,670 0.0232 or 0.0254±0.005 PG 1159 star PG 1159 stars are pre-white dwarfs. [55]
WD 2226-210 17,390 0.025±0.001 White dwarf Located in Helix Nebula [56]
WD 0032−317 A 18,510 0.0266±0.0012 [57]
Feige 55 19,460 0.027965 [58][c]
ZTF J1406+1422 B 20,200 0.029 Brown dwarf A highly-irradiated brown dwarf with an orbital period of 62 minutes and a dayside surface temperature of 10,462 K,[12] comparable to A-type stars such as Vega and Sirius. [12]
KPD 0005+5106 41,000 0.059+0.031
−0.018
Pre-white dwarf Has one unconfirmed exoplanet. [59]
AG Pegasi B 41,700 0.06 White dwarf In a symbiotic binary with AG Peg A, has underwent many mass transfer events, varying in radius, luminosity and temperature. [60]
Regulus Ab 42,440 0.061±0.011 Pre-white dwarf [61]
PSR J0348+0432 B 45,220 0.065±0.005 White dwarf Orbiting a pulsar. [62]
TMTS J052610.43+593445.1 B 45,990 0.0661±0.0054 Subdwarf B star Smallest known hydrogen-burning star. [40]
WISEA 1810−1010 46,610 0.067+0.032
−0.02
Brown dwarf [63]

50,000 to 125,000 km

[edit]

Partial list containing stars from 0.0718 to 0.18 R.

Star name Star radius, kilometres Star radius, R Star class Notes References
SCR 1845−6357 B 50,000 0.0719±0.01 Brown dwarf [64]
DENIS 0255−4700 53,986 0.0776±0.0060 Faintest brown dwarf with a measured visual magnitude. [65]
BE Ursae Majoris A 54,300 0.078±0.004 Subdwarf O star [66]
LP 40-365 54,300 0.078+0.040
−0.020
White dwarf A white dwarf that might have formed in a type Iax supernova. [67]
Regulus D
(SDSS J1007+1930)
54,500 ~0.078 Brown dwarf Potential member of the Regulus system, which could be one of the most widely-separated stellar systems. This brown dwarf is at 12.6 light-years from Regulus. [68][d]
WD 0032−317 B 54,890 0.0789+0.0085
−0.0083
A highly-irradiated brown dwarf with a dayside temperature hotter than the surface of Sun. Its dayside temperature measures 7,900 K (7,630 °C), while its nightside is much cooler, at 1,970 K (1,700 °C). [57]
WISE 1534–1043 55,300 0.0794 ± 0.016 This object has a very fast and unusual transverse velocity, and is believed to be very old and metal-poor to explain such unusual velocity. [69]
Epsilon Indi Ba 55,700 0.08–0.081 [70]
WISE J0623-0456 55,800 or 79,400 0.0802+0.0175
−0.0134
[71] or 0.1141±0.0144[72]
LHS 6343 C 56,340 0.08098±0.00442 [73]
Epsilon Indi Bb 57,050 0.082–0.083 [70]
54 Piscium B 57,900 0.0832±0.0021 [71]
Gliese 229 Ba 57,910 0.08324+0.00514
−0.01233
[74]
Wolf 1130 C 58,600 0.0843 [75]
EBLM J0555-57Ab 58,720 0.0844+0.0131
−0.006
Red dwarf Smallest known red dwarf. [76]
Scholz's Star B 58,770 0.08447+0.0015
−0.0016
Brown dwarf A nearby star that passed trough the Solar System's Oort cloud 80,000 years ago. [77]
EPIC 201702477b [fr] 59,340 0.0853±0.0041 [78]
Luhman 16 A 60,050 0.0863 Nearest brown dwarf to Earth, together with is binary companion Luhman 16 B. [79]
GJ 1245 C 60,530 0.087±0.004 Red dwarf [80]
Gliese 229 Bb 60,770 0.0874+0.0123
−0.0051
Brown dwarf [74]
SSSPM J0829-1309 61,220 0.088±0.003 Red dwarf An L2 dwarf that is fusing hydrogen. SSSPM J0829-1309 is one of the least luminous and massive hydrogen-fusing stars, and is smaller than Jupiter. [81][82]
HD 63754 B 61,500–67,900 0.0884–0.0976 Brown dwarf Among the most massive brown dwarfs. [83]
HD 72946 B 61,500 0.0884 [84]
Gliese 570 D 63,629 0.09146+0.0051
−0.0041
[71]
2MASS 0243−2453 64,004–73,744 0.092–0.106 [85]
2MASS J0348−6022 64,700 0.093+0.016
−0.010
[86]
WISE 0146+4234 A 65,270 0.0938+0.0024
−0.0026
[87]
Kelu-1 B 65,400 to 72,500 0.094 to 0.104 [88][e]
SCR 1845−6357 A 65,470 0.0941±0.0039 Red dwarf [65]
WISE 0146+4234 B 65,670 0.9944+0.0035
−0.0015
Brown dwarf [87]
SDSS J1416+1348 A 65,700 0.0945±0.0082 [89]
Kelu-1 A 66,000 to 74,900 0.095 to 0.108 [88][f]
47 Ophiuchi C 66,500 0.0956±0.001 [72]
2MASS 0937+2931 67,200 0.0966±0.0164 [90]
2MASS J1047+21 67,200 0.0966±0.0164 [90]
CoRoT-15b 67,200 0.0966±0.0123 [78]
SDSS J1416+1348 B 67,200 0.0966±0.0164 [89]
WISE 0359−5401 67,200 0.0966±0.0021 [91]
TVLM 513-46546 67,480—75,830 0.097–0.109 Has one confirmed exoplanet. [92]
CWISEP J1935-1546 67,900 0.0976±0.0143 [93]
Eta Coronae Borealis C 67,900 0.0976±0.0031 [72]
WISE 2150−7520 B 67,900 0.0976±0.0164 [94]
LHS 1070 C 68,180 0.098 Certainly a brown dwarf based on its mass.[95] [96]
WASP-30B 68,670 0.0987±0.0031 [78]
WASP-128B 68,670 0.0987±0.0021 [78]
HD 33632 Ab 69,350 0.0997 [97]
2MASS J0407+1546 69,570 0.100+0.024
−0.008
[86]
2MASS J1219+3128 69,570 0.100+0.027
−0.013
[86]
HD 114762 B 69,570 0.100 Red dwarf [98]
R Aquarii B >70,000 >0.1 White dwarf Makes a symbiotic binary with its companion R Aquarii A, a red giant. [99]
EBLM J0954-23 70,266 0.101±0.017 Red dwarf [76]
KOI-189 B 70,474–71,796 0.1013–0.1032 [100]
Scholz's Star A 70,900 0.1019+0.0006
−0.0007
A nearby star that passed trough the Solar System's Oort cloud 80,000 years ago. [77]
Gliese 569 Bb 70,960 0.102±0.020 Brown dwarf First brown dwarf ever discovered, together with its companion Gliese 569 Ba, which were thought to be a single astronomical body at the time. [101]
15 Sagittae B 71,492 0.1028±0.0411 [102]
GD 165 B 71,492 0.1028±0.008 [90]
LHS 1070 B 72,350 0.104 Likely a brown dwarf based on its mass.[95] [96]
WD 1032+011 B 73,190 0.1052±0.01 A brown dwarf orbiting a white dwarf with an extremely low orbital period of 0.09 days (2.2 hours), both being tidally locked to each other.[52] [52]
WISE 2150-7520 A 73,640 0.1058±0.0062 [94]
BW Sculptoris B 73,640 0.1058±0.0051 [103]
Ross 614 B 74,100 ~0.107 Red dwarf [104]
Luhman 16 B 74,370 0.1069 Brown dwarf Nearest brown dwarf to Earth, together with is binary companion Luhman 16 B. [105]
LHS 2924 74,440 0.107 Red dwarf Was the smallest known star at its discovery. [106]
DENIS J1048−3956 75,140 0.108 [107]
VZ Piscium B 75,800 0.1089±0.0041 Also called NLTT 56936 B[108] or HIP 115819 B.[109] [72]
WISE 0607+2429 75,800 0.1089±0.0175 Brown dwarf [72]
ESO 207-61 76,500 0.11±0.02 One of the first brown dwarfs to be identified.[110] [72]
Kepler-39b 76,500 0.11±0.0031 Kepler-39 rotates rapidly with a rotation period of 1.6 hours and hence has an oblate shape, with its equator length being 22% larger than the poles.[111] [78]
CoRoT-3b 77,220 0.111±0.0051 [78]
TOI-2119 B 77,220 0.111±0.0031 [112]
2MASS 1237+6526 77,930 0.112±0.016 Has one unconfirmed exoplanet. [72]
LHS 2065 78,610 0.113±0.006 Red dwarf [113]
WISE J004945.61+215120.0 80,100 0.1151±0.0123 Brown dwarf [72]
2MASS J0523−1403 80,500 0.1157±0.0065 Red dwarf [65]
KELT-1B 80,770 0.1161±0.0031 Brown dwarf [78]
LHS 292 80,980 0.1164±0.0044 Red dwarf Not to be confused with LHS 2924 (see above) [65]
WISE 1405+5534 82,220 0.1182±0.0021 Brown dwarf [114]
vB 10 82,300 0.1183+0.0059
−0.0057
Red dwarf [113]
2M1540 82,790 0.119 [115][g]
EI Cancri B 82,790 0.119±0.021 [116]
Gliese 569 Ba 82,790 0.119±0.020 Brown dwarf First brown dwarf ever discovered, together with its companion Gliese 569 Bb, which were thought to be a single astronomical body at the time. [101]
TRAPPIST-1 82,927 0.1192±0.0013 Red dwarf Hosts a planetary system with seven confirmed planets. [117]
OGLE-TR-122B 83,480 0.120+0.024
−0.013
Was the smallest known star from 2005 to 2013. [118]
Teegarden's Star 83,480 0.120±0.012 Has three confirmed exoplanets. [119]
G 196-3 B 84,400 0.1213±0.00719 Brown dwarf [72]
Königstuhl 1 B 84,400 0.1213±0.0021 [72]
vB 8 84,458 0.1214+0.006
−0.0057
Red dwarf [113]
SPECULOOS-3 85,600 0.123±0.0022 Has one confirmed exoplanet. [120]
2MASS 0122-2439 B 85,800 0.1233±0.021 [121]
DX Cancri 85,920 0.1235±0.0006 [65]
SCR J1546−5534 86,267 0.124±0.004 [122]
LHS 2090 86,960 0.125±0.005 [65]
VHS J1256–1257b 87,200 0.125 Brown dwarf [123]
LHS 288 87,380 0.1256±0.0042 Red dwarf [65]
Gliese 412 B 87,797 0.1262±0.0054 [124]
OY Carinae B 88,350 0.127 [125]
AZ Cancri 88,630 0.1274±0.0195 [72]
AS Leonis Minoris B 90,400 – 355,000 0.13–0.51 White dwarf or Subdwarf B star AS Leonis Minoris is an eclipsing binary system made up of a luminous red giant (45–170 R) and a hot companion (AS LMi B). It has the longest period of any known eclipsing binary at 69 years. [126]
GJ 1245 B 90,400 0.13±0.007 Red dwarf [127]
Gliese 623 B 92,350 0.133 ± 0.008 [128][h]
Gliese 105 C 92,459 0.1329+0.0057
−0.0055
[129]
Teide 1 93,711 0.1347+0.0123
−0.0077
Brown dwarf First brown dwarf to be confirmed. [130]
EI Cancri A 94,620 0.136±0.020 Red dwarf [116]
Alpha Trianguli B 97,400 0.14 [131]
LHS 1070 A 97,400 0.14 [96]
HD 149382 99,485 0.143 Subdwarf B star [132]
EZ Aquarii A (Luyten 789-6 A) 99,485 0.143±0.022 Red dwarf [127]
EZ Aquarii B (Luyten 789-6 B) 99,485 0.143±0.022 [127]
Wolf 359 100,180 0.144±0.004 Fifth-nearest star system to Earth. [113]
DENIS-P J1058.7−1548 101,500 0.1459±0.001 Brown dwarf [72]
GJ 1245 A 101,570 0.146±0.007 Red dwarf [80]
LP 944-20 102,900 0.1479±0.0144 Brown dwarf Among the brightest brown dwarfs. [72]
Wolf 424 A 104,350 0.150±0.019 Red dwarf [116]
NY Virginis A 105,000 0.151±0.001 Subdwarf B star [133]
EX Hydrae B 105,300 0.1513 Red dwarf [41]
GJ 1061 105,750 0.152±0.007 Has three confirmed exoplanets. [113]
Wolf 424 B 106,440 0.153±0.019 [116]
Proxima Centauri 107,280 0.1542±0.0045 The nearest extrasolar star. Has one confirmed planet, one candidate, and one disputed [134]
85 Pegasi Bb 107,830 0.155 [135]
Gliese 65 B (Luyten 726-8 B) 110,620 0.159±0.006 The Gliese 65 system may host a Neptune-mass planet. [136]
NY Virginis B 111,310 0.16 [137]
GL Virginis 111,520 0.1603±0.0053 [138]
TZ Arietis (GJ 9066) 112,010 0.161±0.014 Has one confirmed exoplanet. [127]
2M1510 Aa 112,600 0.16185 Brown dwarf The system has a candidate planet (2M1510 b) that orbits on a polar orbit around 2M1510AB, making this planet the first planet discovered orbiting polar around a binary system. [139][140][141][142]
2M1510 Ab 112,600 0.16185
Gliese 65 A (Luyten 726-8 A) 114,790 0.165±0.006 Red dwarf The Gliese 65 system may host a Neptune-mass planet. [136]
Kepler-451 B 116,880 0.168±0.001 [143]
YZ Ceti 116,880 0.168±0.009 Has three confirmed exoplanets. [144]
HR 858 B 118,000 0.17±0.04 [145]
LP 791-18 118,000 0.17±0.018 Has three confirmed exoplanets. [146]
UY Sextantis 118,000 0.17±0.01 Subdwarf B star [147]
Z Andromedae B 118,000 to 250,000 0.17±0.03 to 0.36±0.06 White dwarf Makes a symbiotic binary with its companion Z Andromedae A, a red giant. [148]
HIP 81208 Cb 122,100 0.175 ± 0.009 Brown dwarf [149]
AB Doradus C 124,000 0.178 Red dwarf Among the least massive stars confirmed. [150][i]
Gliese 22 B 124,530 0.179±0.009 [80]

125,000 to 200,000 km

[edit]

Partial list containing stars from 0.18 to 0.287 R.

Star name Star radius, kilometres Star radius, R Star class Notes References
Groombridge 34 B
(Gliese 15 B)
125,230 0.18±0.03 Red dwarf [151]
HW Virginis A 127,310 0.183±0.026 Subdwarf B star [152]
HU Delphini A 128,010 0.184±0.004 Red dwarf [127]
Gliese 29 B 129,400 0.186±0.014 [122]
GJ 3323 129,540 0.1862±0.0059 Has two confrirmed exoplanets. [138]
Barnard's Star 130,100 0.187±0.001 Second-nearest star system to the Solar System. The star with the highest proper motion. Has three confirmed exoplanets. [113]
Alpha Mensae B 132,180 0.19±0.01 [153]
GJ 1128 132,000 0.190±0.014 [127]
Ross 248
(HH Andromedae)
132,180 0.19 [124]
Ross 128 (Gliese 447) 137,750 0.198±0.007 Has one confirmed exoplanet. [113]
Ross 154 (V1216 Sagittarii) 139,140 0.200±0.008 [113]
GJ 1062 140,500 0.202±0.012 Red subdwarf Another size estimates include 0.372±0.076 R[154] and 0.411±0.051 R.[155] [156]
Kepler-70 141,200 0.203±0.007 Subdwarf B star Has two unconfirmed exoplanets. [157]
Kepler-451 A 141,200 0.203±0.001 Possibly has two exoplanets. [143]
RR Caeli B 141,200—149,600 (0.203–0.215) ± 0.015 Red dwarf Has two exoplanets. [158]
GJ 1214 141,920 0.204+0.0085
−0.0084
Has one confirmed exoplanet. [113]
LHS 1140 142,600 0.205±0.008 Has two confirmed exoplanets. [113]
Krüger 60 B 145,400 0.209±0.017 [116]
Ross 508 147,000 0.2113±0.0063 Has one confirmed exoplanet. [159]
GJ 1132 149,580 0.215±0.009 [113]
QY Aurigae A 151,660 0.218±0.021 [127]
QY Aurigae B 151,660 0.218±0.021 [127]
Kepler-16 B 157,388 0.22623±0.00059 Has one confirmed exoplanet. [160]
V391 Pegasi 160,000 0.23 Subdwarf B star Has one unconfirmed exoplanet. [161]
Gliese 777 B 160,710 0.231±0.025 Red dwarf [127]
Kepler-1649 161,190 0.2317±0.0049 Has two confirmed exoplanets. [162]
Eta Telescopii B 163,000 0.234±0.003 Brown dwarf [163]
CM Draconis B 165,100 0.23732±0.00014 Red dwarf [164]
Ross 47 165,580 0.238±0.009 [113]
Kepler-429 166,970 0.24 Subdwarf B star Has three unconfirmed exoplanets. [165]
2M1207 A 172,000 0.247+0.041
−0.082
Brown dwarf [166]
PZ Telescopii B 173,900 0.25+0.03
−0.04
[167]
CM Draconis A 174,710 0.25113±0.00016 Red dwarf [164]
DG Canum Venaticorum A 176,010 0.253 [154]
Ross 614 A 176,710 0.254±0.028 [154]
Gliese 625 177,400 0.255±0.034 [168]
Gliese 12 182,060 0.2617+0.0058
−0.0070
Has one confirmed exoplanet. [169]
HIP 79098 B 185,800 0.2672±0.0617 Brown dwarf [121]
BX Trianguli B 188,000 0.27±0.01 Red dwarf Has one confirmed exoplanet. [170]
V846 Arae B 188,000 0.27±0.04 Subdwarf O star [171]
Mu Herculis C 189,930 0.273±0.032 Red dwarf [127]
40 Eridani C 190,620 0.274±0.011 [124]
Struve 2398 B 194,800 0.280±0.005 [172]
Gliese 402 197,580 0.284±0.011 [113]
GJ 3991 197,580 0.286±0.011 [113]

200,000 to 275,000 km

[edit]

Partial list containing stars from 0.29 to 0.395 solar radii.

Star name Star radius, kilometres Star radius, R Star class Notes References
Gliese 105 B 201,060 0.289+0.012
−0.011
Red dwarf [129]
CoRoT-7 B 201,800 0.29 [173]
Mu Cassiopeiae Ab 201,800 0.29 [174]
AP Columbae 202,400 0.291±0.009 The nearest pre-main sequence star to Earth. [122]
Kapteyn's Star (VZ Pictoris) 202,400 0.291±0.025 Red subdwarf Closest halo star to the Sun. Previously believed to host an ancient planetary system with potential habitable planets. [175]
Stein 2051 A 203,100 0.292±0.031 Red dwarf [168]
HN Librae 208,000 0.299±0.009 Has one confirmed exoplanet. [176]
LS Muscae B ~210,000 0.3±0.1 Subdwarf O star [171]
Krüger 60 A 209,400 0.301±0.015 Red dwarf [116]
Gliese 581 210,100 0.302±0.005 Has three confirmed exoplanets. [177]
L 98-59 210,800 0.303+0.026
−0.023
Has four confirmed exoplanets and one unconfirmed. [178]
EQ Pegasi B 210,800 0.303±0.013 [124]
Luyten's Star (Gliese 273) 221,930 0.319±0.004 Has two confirmed exoplanets and two unconfirmed. [113]
Wolf 1061 221,930 0.319±0.007 Has three confirmed exoplanets. [113]
GJ 3929 223,000 0.32±0.01 Has two confrirmed exoplanets. [179]
Xi Ursae Majoris Ab 223,000 0.32 [131]
Gliese 486 228,190 0.328±0.011 Has one confirmed exoplanet. [180]
YZ Canis Minoris 228,190 0.328±0.013 [113]
LHS 1678 228,890 0.329±0.01 Has three confirmed exoplanets. [181]
Regulus C 231,000 0.332±0.023 [122]
AM Herculis B 230,000 0.33 [182]
Wolf 1130 A 230,000 0.33 [183]
EV Lacertae 230,280 0.331±0.013 On 25 April 2008, a record-setting stellar flare was observed on its surface by NASA's Swift, that was thousands of times more powerful than any solar flare.[184] [113]
Gliese 357 231,670 0.333 Has three confirmed exoplanets. [154]
Gliese 667 C 234,450 0.337±0.014 Has two confirmed exoplanets. [113]
Struve 2398 A (Gliese 725 A) 244,200 0.351±0.003 Has one confirmed exoplanet. [172]
Gliese 251 253,230 0.364±0.001 [138]
Ross 458 A 256,020 0.368±0.031 Has one confirmed exoplanet. [168]
2MASS 0122–2439 A 257,000 0.369 ± 0.048 [185]
Furuhjelm 46 B 257,000 0.37±0.07 [154]
Furuhjelm 46 A 257,000 0.37±0.07 [154]
Innes' star 258,100 0.371±0.012 [122]
Gliese 876
(IL Aquarii)
258,800 0.372±0.004 Has four confirmed exoplanets. First red dwarf known to host exoplanets. [113]
LHS 6343 A 259,500 0.373±0.005 [186]
LTT 3780 260,190 0.374±0.011 Has two confirmed exoplanets. [187]
Gliese 22 C 261,580 0.376±0.018 [80]
TOI-270 262,970 0.378±0.011 [188]
Gliese 1 263,700 0.379±0.002 [189]
13 Ceti Ab 264,000 0.38 [131]
GQ Lupi B 264,000 0.38±0.072 Brown dwarf [121]
Groombridge 34 A (Gliese 15 A) 267,840 0.385±0.002 Red dwarf [113]
Gliese 412 A 272,710 0.398±0.009 [138]
Lalande 21185 272,710 0.392±0.004 [113]
Gliese 22 B 274,110 0.394 [190]
LHS 6343 B 274,110 0.394±0.012 [186]

275,000 to 350,000 km

[edit]

Partial list containing stars from 0.395 to 0.5 solar radii.

Star name Star radius, kilometres Star radius, R Star class Notes References
Gliese 570 C 277,300 0.399 ± 0.028 Red dwarf [128][j]
Asellus Primus B (Theta Boötis B) 279,180 0.4013±0.012 [138]
GJ 3293 281,100 0.404±0.027 [191]
Gliese 623 A 280,900 0.404 ± 0.024 [128][k]
Gliese 908 (Lalande 46650) 284,540 0.409±0.023 [156]
EQ Pegasi A 284,540 0.409±0.016 Has one confirmed exoplanet. [124]
Gliese 163 284,540 0.409+0.017
−0.016
[113]
SDSS J001820.5−093939.2 285,930 0.411+0.090
−0.011
F-type star Among the most metal-poor stars. [192]
Gliese 806 288,300 0.4144±0.0038 Red dwarf Has three confirmed exoplanets. [193]
Gliese 687 291,290 0.4187+0.0066
−0.0063
[113]
QS Virginis B 292,000 0.42±0.02 [36]
TOI-700 292,000 0.420±0.031 [194]
Gliese 180 294,210 0.4229±0.0047 Has two confirmed exoplanets and one unconfirmed. [138]
AD Leonis 294,490 0.4233±0.0057 [195]
Gliese 686 297,060 0.427±0.013 [196]
GJ 3634 300,000 0.43±0.03 Has one confirmed exoplanet. [197]
Iota Ursae Majoris B 300,000 0.43 [198]
U Geminorum B 300,000 0.43±0.06 [199]
Gliese 436 300,540 0.432±0.011 Has one confirmed exoplanet. [113]
Gliese 393 300,540 0.432±0.025 [156]
Sigma Coronae Borealis C 304,020 0.437±0.020 [124]
Kappa1 Apodis B 306,000 0.44±0.06 Subdwarf O star [171]
WR 93b 306,000 0.44 Wolf-Rayet [200]
Gliese 832 307,500 0.442±0.018 Red dwarf [113]
Alpha Caeli B 313,000 0.45 [198]
Gliese 367 (Anañuca) 317,930 0.457±0.013 Has three confirmed exoplanets. [201]
Gliese 588 320,000 0.46±0.019 [113]
Iota Ursae Majoris C 320,000 0.46 [198]
Gliese 849 322,800 0.464±0.018 [113]
BAT99-123 (Brey 93) 327,000 0.47 Wolf-Rayet [202]
Gliese 176 329,760 0.474±0.015 Red dwarf [113]
Lacaille 9352 329,760 0.474±0.008 [113]
Tau Boötis B 333,900 0.48±0.05 [203]
Gliese 752 A 334,630 0.481±0.014 [196]
UScoCTIO 108 A 336,720 0.484 Brown dwarf [204][l]
Gliese 526 338,810 0.487±0.008 Red dwarf [113]
UX Ursae Majoris B 345,070–484,900 0.496–0.697 [205]
Theta Persei Ab 346,500 0.498±0.017 [124]
GJ 3470 347,150 0.499±0.021 [113]
Gliese 22 A ~350,000 ~0.5 [206]
Kappa Reticuli B 347,900 0.50 [207]
TOI-2119 347,900 0.500±0.015 [112]

Smallest stars by type

[edit]
List of the smallest stars by star type
Type Star name Radius
Solar radii
(Sun = 1)
Radius
Jupiter radii
(Jupiter = 1)
Radius
Earth radii
(Earth = 1)
Radius
(km / mi)
Date Notes References
Red dwarf EBLM J0555-57Ab 0.084 0.84 9.41 60,000 km (37,000 mi) 2017 The red dwarf stars are considered the smallest stars known, and representative of the smallest star possible. [208][209][210]
Brown dwarf ZTF J1406+1422 B 0.029 0.282 3.16 20,200 kilometres (12,600 mi) 2022 Brown dwarfs are not massive enough to build up the pressure in the central regions to allow nuclear fusion of hydrogen into helium. They are best described as extremely massive gas giants that were not able to ignite into a hydrogen-fusing star. [12]
White dwarf HD 49798 0.0023 0.023 0.25 1,600 km (990 mi) 2021 White dwarfs are stellar remnants produced when a star with around 8 solar masses or less sheds its outer layers into a planetary nebula. The leftover core becomes the white dwarf. It is thought that white dwarfs cool down over quadrillions of years to produce a black dwarf. [13]
Neutron star RX J0720.4−3125 0.0000064683 – 0.0000077332 0.00006294 – 0.00007525 0.0007055 – 0.0008435 4.50+0.08
−0.09
 – 5.38+0.13
−0.14
2012 Neutron stars are stellar remnants produced when stars with around 9 solar masses or more explode in supernovae at the ends of their lives. They are usually produced by stars with less than 20 solar masses, although a more massive star may produce a neutron star in certain cases. [2]

Timeline of smallest red dwarf star recordholders

[edit]

Red dwarfs are considered the smallest star known that are active fusion stars, and are the smallest stars possible that is not a brown dwarf.

List of smallest red dwarf titleholders
Star name Date Radius
Solar radii
(Sun = 1)
Radius
Jupiter radii
(Jupiter = 1)
Radius
km
(mi)
Notes
EBLM J0555-57Ab 2017- 0.084 0.84 60,000 km (37,000 mi) This star has a size comparable to that of Saturn. [208][209][210]
2MASS J0523-1403 2013-2017 0.102 1.01 70,600 km (43,900 mi) Lowest mass main sequence star as of 2020. [211][81][212][90]
OGLE-TR-122B 2005-2013 0.117 1.16 81,100 km (50,400 mi) [213][214][118]

Notes

[edit]
  1. ^ "Single-star evolution" refer to a star that did not accreted mass from a companoon (e.g. a nova) nor formed by the merger of two stars or white dwarfs (e.g. ZTF J1901).
  2. ^ Applying the Stefan–Boltzmann law with a nominal solar effective temperature of 5,772 K:
    .
  3. ^ Applying the Stefan–Boltzmann law with a nominal solar effective temperature of 5,772 K:
    .
  4. ^ Calculated using surface gravity and mass, via the equation log(R/R) = 2.22 + 0.5 • log(M/M) − 0.5 • log(g).
  5. ^ Applying the Stefan–Boltzmann law with a nominal solar effective temperature of 5,772 K:
    .
  6. ^ Applying the Stefan–Boltzmann law with a nominal solar effective temperature of 5,772 K:
  7. ^ Applying the Stefan–Boltzmann law with a nominal solar effective temperature of 5,772 K:
    .
  8. ^ Calculated, using the Stefan-Boltzmann law and the star's effective temperature and luminosity, with respect to the solar nominal effective temperature of 5,772 K:
  9. ^ Applying the Stefan–Boltzmann law with a nominal solar effective temperature of 5,772 K:
    .
  10. ^ Calculated, using the Stefan-Boltzmann law and the star's effective temperature and luminosity, with respect to the solar nominal effective temperature of 5772 K:
  11. ^ Calculated, using the Stefan-Boltzmann law and the star's effective temperature and luminosity, with respect to the solar nominal effective temperature of 5,772 K:
  12. ^ Applying the Stefan–Boltzmann law with a nominal solar effective temperature of 5,772 K:
    .


References

[edit]
  1. ^ Shao, Yi-Xuan; Zhou, Ping; Li, Xiang-Dong; Zhang, Bin-Bin; Castro-Tirado, Alberto Javier; Wang, Pei; Li, Di; Zhang, Zeng-Hua; Zhang, Zi-Jian; Hu, You-Dong; Pandey, Shashi B. (2024-11-01). "GTC Optical/Near-infrared Upper Limits and NICER X-Ray Analysis of SGR J1935+2154 for the Outburst in 2022". The Astrophysical Journal. 976 (1): 99. arXiv:2410.00635. Bibcode:2024ApJ...976...99S. doi:10.3847/1538-4357/ad822f. ISSN 0004-637X.
  2. ^ a b Hohle, M.M.; Haberl, F.; Vink, J.; de Vries, C.P.; et al. (2012). "The Continued Spectral and Temporal Evolution of RX J0720.4-3125". Monthly Notices of the Royal Astronomical Society. 423 (2): 1194–99. arXiv:1203.3708. Bibcode:2012MNRAS.423.1194H. doi:10.1111/j.1365-2966.2012.20946.x. S2CID 55696761.
  3. ^ a b c d e f g h Nashed, G. G. L. (June 2023). "The Effect of f(R, T) Modified Gravity on the Mass and Radius of Pulsar HerX1". The Astrophysical Journal. 950 (2): 129. arXiv:2306.10273. Bibcode:2023ApJ...950..129N. doi:10.3847/1538-4357/acd182. ISSN 0004-637X.
  4. ^ a b Doroshenko, Victor; Suleimanov, Valery; Pühlhofer, Gerd; Santangelo, Andrea (December 2022). "A strangely light neutron star within a supernova remnant". Nature Astronomy. 6 (12): 1444–1451. Bibcode:2022NatAs...6.1444D. doi:10.1038/s41550-022-01800-1. ISSN 2397-3366.
  5. ^ Zhang, Shu-Rui; Rueda, Jorge A.; Negreiros, Rodrigo (2024). "Can the central compact object in HESS J1731--347 be indeed the lightest neutron star observed?". The Astrophysical Journal. 978 (1): 1. arXiv:2411.19382. Bibcode:2025ApJ...978....1Z. doi:10.3847/1538-4357/ad96b5.
  6. ^ Demorest, P. B.; Pennucci, T.; Ransom, S. M.; Roberts, M. S. E.; Hessels, J. W. T. (October 2010). "A two-solar-mass neutron star measured using Shapiro delay". Nature. 467 (7319): 1081–1083. arXiv:1010.5788. Bibcode:2010Natur.467.1081D. doi:10.1038/nature09466. ISSN 1476-4687. PMID 20981094.
  7. ^ a b Potekhin, Alexander Y. (2014). "Atmospheres and radiating surfaces of neutron stars". Phys. Usp. 57 (8): 735–770. arXiv:1403.0074. Bibcode:2014PhyU...57..735P. doi:10.3367/UFNe.0184.201408a.0793. Retrieved 2024-12-04.
  8. ^ a b c d Sen, Debashree; Guha, Atanu (2024-02-21). "Estimating the dark matter halo velocity and surface temperature of some known pulsars due to dark matter capture". arXiv:2402.13795 [hep-ph].
  9. ^ Kumar, R.; Kumar, M.; Thakur, V.; Kumar, S.; Kumar, P.; Sharma, A.; Agrawal, B.K.; Dhiman, S.K.; et al. (May 2023). "Observational constraint from the heaviest pulsar PSR J0952-0607 on the equation of state of dense matter in relativistic mean field model". Physical Review C. 107 (5): 19. arXiv:2306.05097. Bibcode:2023PhRvC.107e5805K. doi:10.1103/PhysRevC.107.055805.
  10. ^ Nättilä, J.; Miller, M. C.; Steiner, A. W.; Kajava, J. J. E.; Suleimanov, V. F.; Poutanen, J. (2017-12-01). "Neutron star mass and radius measurements from atmospheric model fits to X-ray burst cooling tail spectra". Astronomy & Astrophysics. 608: A31. arXiv:1709.09120. Bibcode:2017A&A...608A..31N. doi:10.1051/0004-6361/201731082. ISSN 0004-6361.
  11. ^ Miller, M. C.; Lamb, F. K.; Dittmann, A. J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K. C.; Guillot, S.; Ho, W. C. G.; Lattimer, J. M.; Loewenstein, M.; Morsink, S. M.; Ray, P. S.; Wolff, M. T.; Baker, C. L.; Cazeau, T. (2021-09-01). "The Radius of PSR J0740+6620 from NICER and XMM-Newton Data". The Astrophysical Journal. 918 (2): L28. arXiv:2105.06979. Bibcode:2021ApJ...918L..28M. doi:10.3847/2041-8213/ac089b. ISSN 0004-637X.
  12. ^ a b c d Burdge, Kevin B.; Marsh, Thomas R.; Fuller, Jim; Bellm, Eric C.; Caiazzo, Ilaria; Chakrabarty, Deepto; Coughlin, Michael W.; De, Kishalay; Dhillon, V. S.; Graham, Matthew J.; Rodríguez-Gil, Pablo; Jaodand, Amruta D.; Kaplan, David L.; Kara, Erin; Kong, Albert K. H. (May 2022). "A 62-minute orbital period black widow binary in a wide hierarchical triple". Nature. 605 (7908): 41–45. arXiv:2205.02278. Bibcode:2022Natur.605...41B. doi:10.1038/s41586-022-04551-1. ISSN 1476-4687. PMID 35508781.
  13. ^ a b Mereghetti, S.; Pintore, F.; Rauch, T.; La Palombara, N.; Esposito, P.; Geier, S.; Pelisoli, I.; Rigoselli, M.; Schaffenroth, V.; Tiengo, A. (2021-04-22). "New X-ray observations of the hot subdwarf binary HD49798 / RXJ0648.0-4418". Monthly Notices of the Royal Astronomical Society. 504 (1): 920–925. arXiv:2104.03867. doi:10.1093/mnras/stab1004. ISSN 0035-8711.
  14. ^ a b Caiazzo, Ilaria; Burdge, Kevin B.; Fuller, James; Heyl, Jeremy; Kulkarni, S. R.; Prince, Thomas A.; Richer, Harvey B.; Schwab, Josiah; Andreoni, Igor; Bellm, Eric C.; Drake, Andrew; Duev, Dmitry A.; Graham, Matthew J.; Helou, George; Mahabal, Ashish A. (2021-07-01). "A highly magnetised and rapidly rotating white dwarf as small as the Moon". Nature. 595 (7865): 39–42. arXiv:2107.08458. Bibcode:2021Natur.595...39C. doi:10.1038/s41586-021-03615-y. ISSN 0028-0836. PMID 34194021.
  15. ^ Bamba, Aya; Terada, Yukikatsu; Kashiyama, Kazumi; Kisaka, Shota; Minami, Takahiro; Takahashi, Tadayuki (2024-05-23). "On the X-ray efficiency of the white dwarf pulsar candidate ZTF J190132.9+145808.7". Publications of the Astronomical Society of Japan. 76 (4): 702–707. doi:10.1093/pasj/psae041. ISSN 0004-6264.
  16. ^ Külebi, B.; Jordan, S.; Nelan, E.; Bastian, U.; Altmann, M. (2010-12-01). "Constraints on the origin of the massive, hot, and rapidly rotating magnetic white dwarf RE J 0317-853 from an HST parallax measurement". Astronomy & Astrophysics. 524: A36. arXiv:1007.4978. Bibcode:2010A&A...524A..36K. doi:10.1051/0004-6361/201015237. ISSN 0004-6361.
  17. ^ Miller, David R.; Caiazzo, Ilaria; Heyl, Jeremy; Richer, Harvey B.; El-Badry, Kareem; Rodriguez, Antonio C.; Vanderbosch, Zachary P.; van Roestel, Jan (October 2023). "An Extremely Massive White Dwarf Escaped from the Hyades Star Cluster". The Astrophysical Journal Letters. 956 (2): L41. arXiv:2310.03204. Bibcode:2023ApJ...956L..41M. doi:10.3847/2041-8213/acffc4. ISSN 2041-8205.
  18. ^ "Is the 'Blaze Star' about to explode? If it does, here's where to look in April". Space.com. 2 March 2025.
  19. ^ Schlindwein, Wagner; Baptista, Raymundo; Gerardo Juan Manuel Luna (2025). "Modeling the high-brightness state of the recurrent nova T CRB as an enhanced mass-transfer event". arXiv:2506.05098 [astro-ph.SR].
  20. ^ Caiazzo, Ilaria; Burdge, Kevin B.; Tremblay, Pier-Emmanuel; Fuller, James; Ferrario, Lilia; Gänsicke, Boris T.; Hermes, J. J.; Heyl, Jeremy; Kawka, Adela; Kulkarni, S. R.; Marsh, Thomas R.; Mróz, Przemek; Prince, Thomas A.; Richer, Harvey B.; Rodriguez, Antonio C.; van Roestel, Jan; Vanderbosch, Zachary P.; Vennes, Stéphane; Wickramasinghe, Dayal; Dhillon, Vikram S.; Littlefair, Stuart P.; Munday, James; Pelisoli, Ingrid; Perley, Daniel; Bellm, Eric C.; Breedt, Elmé; Brown, Alex J.; Dekany, Richard; Drake, Andrew; Dyer, Martin J.; Graham, Matthew J.; Green, Matthew J.; Laher, Russ R.; Kerry, Paul; Parsons, Steven G.; Riddle, Reed L.; Rusholme, Ben; Sahman, Dave I. (14 August 2023). "A rotating white dwarf shows different compositions on its opposite faces" (PDF). Nature. 620 (7972): 61–66. arXiv:2308.07430. Bibcode:2023Natur.620...61C. doi:10.1038/s41586-023-06171-9. PMID 37468630. S2CID 259993565. Retrieved 9 March 2024.
  21. ^ Mace, Gregory N.; Mann, Andrew W.; Skiff, Brian A.; Sneden, Christopher; Kirkpatrick, J. Davy; Schneider, Adam C.; Kidder, Benjamin; Gosnell, Natalie M.; Kim, Hwihyun; Mulligan, Brian W.; Prato, L.; Jaffe, Daniel (2018-02-01). "Wolf 1130: A Nearby Triple System Containing a Cool, Ultramassive White Dwarf". The Astrophysical Journal. 854 (2): 145. arXiv:1802.04803. Bibcode:2018ApJ...854..145M. doi:10.3847/1538-4357/aaa8dd. ISSN 0004-637X.
  22. ^ Córsico, Alejandro H.; Gerónimo, Francisco C. De; Camisassa, María E.; Althaus, Leandro G. (2019-12-01). "Asteroseismological analysis of the ultra-massive ZZ Ceti stars BPM 37093, GD 518, and SDSS J0840+5222". Astronomy & Astrophysics. 632: A119. arXiv:1910.07385. Bibcode:2019A&A...632A.119C. doi:10.1051/0004-6361/201936698. ISSN 0004-6361.
  23. ^ Barstow, M. A.; Holberg, J. B.; Koester, D. (1994), "Extreme Ultraviolet Spectrophotometry of HD16538 and HR:8210 Ik-Pegasi", Monthly Notices of the Royal Astronomical Society, 270 (3): 516, Bibcode:1994MNRAS.270..516B, doi:10.1093/mnras/270.3.516
  24. ^ a b c d e f g Pala, A F; Gänsicke, B T; Belloni, D; Parsons, S G; Marsh, T R; Schreiber, M R; Breedt, E; Knigge, C; Sion, E M; Szkody, P; Townsley, D; Bildsten, L; Boyd, D; Cook, M J; De Martino, D (2022-03-11). "Constraining the evolution of cataclysmic variables via the masses and accretion rates of their underlying white dwarfs". Monthly Notices of the Royal Astronomical Society. 510 (4): 6110–6132. doi:10.1093/mnras/stab3449. ISSN 0035-8711.
  25. ^ Hollands, Mark A.; Tremblay, Pier-Emmanuel; Gänsicke, Boris T.; Koester, Detlev; Gentile-Fusillo, Nicola Pietro (2021-05-01). "Alkali metals in white dwarf atmospheres as tracers of ancient planetary crusts". Nature Astronomy. 5 (5): 451–459. arXiv:2101.01225. Bibcode:2021NatAs...5..451H. doi:10.1038/s41550-020-01296-7. ISSN 2397-3366.
  26. ^ Bond, Howard E.; Schaefer, Gail H.; Gilliland, Ronald L.; Holberg, Jay B.; Mason, Brian D.; Lindenblad, Irving W.; et al. (2017). "The Sirius system and its astrophysical puzzles: Hubble Space Telescope and ground-based astrometry". The Astrophysical Journal. 840 (2): 70. arXiv:1703.10625. Bibcode:2017ApJ...840...70B. doi:10.3847/1538-4357/aa6af8. S2CID 51839102.
  27. ^ "GJ 742". Montreal White Dwarf Database. Retrieved 2024-05-30.
  28. ^ Gunderson, Sean J.; Huenemoerder, David P.; Torrejón, José M.; Swarm, Dustin K.; Nichols, Joy S.; Pradhan, Pragati; Ignace, Richard; Guenther, Hans Moritz; Pollock, A. M. T.; Schulz, Norbert S. (December 2024). "A Time-dependent Spectral Analysis of γ Cassiopeiae". The Astrophysical Journal. 978 (1): 105. doi:10.3847/1538-4357/ad944e. ISSN 0004-637X.
  29. ^ Ok, S.; Yardimci, M.; Kalomeni, B.; Schwope, A. (2025-06-23). "X-ray and Optical Analysis of the Prototype Polar AN UMa". Monthly Notices of the Royal Astronomical Society. arXiv:2506.18553. doi:10.1093/mnras/staf1024.
  30. ^ Montargès, M.; Malfait, J.; Esseldeurs, M.; de Koter, A.; Baron, F.; Kervella, P.; Danilovich, T.; Richards, A. M. S.; Sahai, R.; McDonald, I.; Khouri, T.; Shetye, S.; Zijlstra, A.; Van de Sande, M.; El Mellah, I.; Herpin, F.; Siess, L.; Etoka, S.; Gobrecht, D.; Marinho, L.; Wallström, S. H. J.; Wong, K. T.; Yates, aJ. (2025). "An accreting dwarf star orbiting the S-type giant star pi1 Gru". arXiv:2504.16845 [astro-ph.SR].
  31. ^ a b c d Bédard, A.; Bergeron, P.; Fontaine, G. (2017-10-10). "Measurements of Physical Parameters of White Dwarfs: A Test of the Mass–Radius Relation". The Astrophysical Journal. 848 (1): 11. arXiv:1709.02324. Bibcode:2017ApJ...848...11B. doi:10.3847/1538-4357/aa8bb6. ISSN 0004-637X.
  32. ^ a b c d e f g Giammichele, Noemi; Bergeron, Pierre; Dufour, Patrick (2012-04-01). "Know Your Neighborhood: A Detailed Model Atmosphere Analysis of Nearby White Dwarfs". The Astrophysical Journal Supplement Series. 199 (2): 29. arXiv:1202.5581. Bibcode:2012ApJS..199...29G. doi:10.1088/0067-0049/199/2/29.
  33. ^ İkis Gün, G.; et al. (December 2013), "Preliminary results of the spectral analysis of Suzaku data of SW Ursae Majoris and BZ Ursae Majoris", New Astronomy, 25: 1–6, Bibcode:2013NewA...25....1I, doi:10.1016/j.newast.2013.03.011.
  34. ^ Itoh, Kei; et al. (2005). "Density diagnostics of the hot plasma in AE Aquarii with XMM-NEWTON" (PDF). The Astrophysical Journal. 639 (1): 397–404. arXiv:astro-ph/0412559. Bibcode:2006ApJ...639..397I. doi:10.1086/499152. S2CID 14578720. Archived from the original (PDF) on 2011-07-19. Retrieved 2009-11-15.
  35. ^ Singh, K. K.; Meintjes, P. J.; Yadav, K. K. (2021). "Properties of white dwarf in the binary system AR Scorpii and its observed features". Modern Physics Letters A. 36 (13). arXiv:2103.11602. Bibcode:2021MPLA...3650096S. doi:10.1142/S0217732321500966. S2CID 232307204.
  36. ^ a b O'Donoghue; Koen, C.; Kilkenny, D.; Stobie, R. S.; et al. (2003). "The DA+dMe eclipsing binary EC13471-1258: its cup runneth over ... just". Monthly Notices of the Royal Astronomical Society. 345 (2): 506–528. arXiv:astro-ph/0307144. Bibcode:2003MNRAS.345..506O. doi:10.1046/j.1365-8711.2003.06973.x. S2CID 17408072.
  37. ^ Sengupta, Sujan; Taam, Ronald E. (2011-09-02). "Theoretical Spectra of the Am Canum Venaticorum Binary System SDSS J0926+3624: Effects of Irradiation Onto the Donor Star". The Astrophysical Journal. 739 (1): 34. arXiv:1107.1444. Bibcode:2011ApJ...739...34S. doi:10.1088/0004-637X/739/1/34. ISSN 0004-637X.
  38. ^ Romero, A. D.; et al. (December 2013). "Asteroseismological Study of Massive ZZ Ceti Stars with Fully Evolutionary Models". The Astrophysical Journal. 779 (1): 24. arXiv:1310.4137. Bibcode:2013ApJ...779...58R. doi:10.1088/0004-637X/779/1/58. S2CID 53707228. 58.
  39. ^ Mauche, C. W.; Raymond, J. C. (2000). Arthur, Jane; Brickhouse, Nancy; Franco, José (eds.). The EUV Emission-Line spectrum of OY Carinae in superoutburst: scattering in the wind. Astrophysical Plasmas: Codes, Models, and Observations, Proceedings of the conference held in Mexico City, October 25–29, 1999. Revista Mexicana de Astronomía y Astrofísica, Serie de Conferencias. Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias). Vol. 9. pp. 232–233. Bibcode:2000RMxAC...9..232M.
  40. ^ a b Lin, Jie; Wu, Chengyuan; Xiong, Heran; Wang, Xiaofeng; Németh, Péter; Han, Zhanwen; Li, Jiangdan; Elias-Rosa, Nancy; Salmaso, Irene; Filippenko, Alexei V.; Brink, Thomas G.; Yang, Yi; Chen, Xuefei; Yan, Shengyu; Zhang, Jujia (April 2024). "A seven-Earth-radius helium-burning star inside a 20.5-min detached binary". Nature Astronomy. 8 (4): 491–503. arXiv:2312.13612. Bibcode:2024NatAs...8..491L. doi:10.1038/s41550-023-02188-2. ISSN 2397-3366.
  41. ^ a b Beuermann, K.; Reinsch, K. (2024). "Current and secular accretion rates of EX Hydrae". Astronomy and Astrophysics. 687: A273. arXiv:2412.13850. Bibcode:2024A&A...687A.273B. doi:10.1051/0004-6361/202450486.
  42. ^ a b c d e Subasavage, John P.; et al. (July 2017). "The Solar Neighborhood. XXXIX. Parallax Results from the CTIOPI and NOFS Programs: 50 New Members of the 25 parsec White Dwarf Sample". The Astronomical Journal. 154 (1): 24. arXiv:1706.00709. Bibcode:2017AJ....154...32S. doi:10.3847/1538-3881/aa76e0. S2CID 119189852. 32.
  43. ^ Sahu, Kailash C.; et al. (June 2017), "Relativistic deflection of background starlight measures the mass of a nearby white dwarf star", Science, 356 (6342): 1046–1050, arXiv:1706.02037, Bibcode:2017Sci...356.1046S, doi:10.1126/science.aal2879, PMID 28592430, S2CID 206654918.
  44. ^ Giammichele, N.; Fontaine, G.; Brassard, P.; Charpinet, S. (March 2016). "A New Analysis of the Two Classical ZZ Ceti White Dwarfs GD 165 and Ross 548. II. Seismic Modeling". Astrophysical Journal Supplement Series. 223 (1): 10. Bibcode:2016ApJS..223...10G. doi:10.3847/0067-0049/223/1/10. ISSN 0067-0049. S2CID 124354534.
  45. ^ Simon, T.; Fekel, F. C. Jr.; Gibson, D. M. (August 1985). "AY Ceti: a flaring, spotted star with a hot companion". Astrophysical Journal. 295: 153–161. Bibcode:1985ApJ...295..153S. doi:10.1086/163360.
  46. ^ Farihi, J. (April 2022). "Relentless and complex transits from a planetesimal debris disc". Monthly Notices of the Royal Astronomical Society. 511 (2): 1647–1666. arXiv:2109.06183. Bibcode:2022MNRAS.511.1647F. doi:10.1093/mnras/stab3475. hdl:10023/24937.
  47. ^ Provencal, J. L.; et al. (2002). "Procyon B: Outside the Iron Box". The Astrophysical Journal. 568 (1): 324–334. Bibcode:2002ApJ...568..324P. doi:10.1086/338769.
  48. ^ Farihi, J.; Burleigh, M. R.; Holberg, J. B.; Casewell, S. L.; Barstow, M. A. (November 2011). "Evolutionary constraints on the planet-hosting subgiant ε Reticulum from its white dwarf companion". Monthly Notices of the Royal Astronomical Society. 417 (3): 1735–1741. arXiv:1104.0925. Bibcode:2011MNRAS.417.1735F. doi:10.1111/j.1365-2966.2011.19354.x. S2CID 119248128.
  49. ^ Bond, Howard E.; Bergeron, P.; Bedard, A. (2017-10-10). "Astrophysical Implications of a New Dynamical Mass for the Nearby White Dwarf 40 Eridani B". The Astrophysical Journal. 848 (1): 16. arXiv:1709.00478. Bibcode:2017ApJ...848...16B. doi:10.3847/1538-4357/aa8a63. ISSN 0004-637X.
  50. ^ Córsico, A. H.; Uzundag, M.; Kepler, S. O.; Silvotti, R.; Althaus, L. G.; Koester, D.; Baran, A. S.; Bell, K. J.; Bischoff-Kim, A.; Hermes, J. J.; Kawaler, S. D.; Provencal, J. L.; Winget, D. E.; Montgomery, M. H.; Bradley, P. A. (2022-03-01). "Pulsating hydrogen-deficient white dwarfs and pre-white dwarfs observed with TESS. III. Asteroseismology of the DBV star GD 358". Astronomy and Astrophysics. 659: A30. arXiv:2111.15551. Bibcode:2022A&A...659A..30C. doi:10.1051/0004-6361/202142153. ISSN 0004-6361.
  51. ^ Klein, Beth L.; Doyle, Alexandra E.; Zuckerman, B.; Dufour, P.; Blouin, Simon; Melis, Carl; Weinberger, Alycia J.; Young, Edward D. (2021-06-01). "Discovery of Beryllium in White Dwarfs Polluted by Planetesimal Accretion". The Astrophysical Journal. 914 (1): 61. arXiv:2102.01834. Bibcode:2021ApJ...914...61K. doi:10.3847/1538-4357/abe40b. ISSN 0004-637X.
  52. ^ a b c French, Jenni R; Casewell, Sarah L; Amaro, Rachael C; Lothringer, Joshua D; Mayorga, L C; Littlefair, Stuart P; Lew, Ben W P; Zhou, Yifan; Apai, Daniel; Marley, Mark S; Parmentier, Vivien; Tan, Xianyu (2024-09-13). "The only inflated brown dwarf in an eclipsing white dwarf–brown dwarf binary: WD1032+011B". Monthly Notices of the Royal Astronomical Society. 534 (3): 2244–2262. doi:10.1093/mnras/stae2121. ISSN 0035-8711.
  53. ^ Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Ashley, R. P.; Bours, M. C. P.; Breedt, E.; Burleigh, M. R.; Copperwheat, C. M.; Dhillon, V. S.; Green, M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Rebassa-Mansergas, A.; Sahman, D. I.; Schreiber, M. R. (2017). "Testing the white dwarf mass–radius relationship with eclipsing binaries". Monthly Notices of the Royal Astronomical Society. 470 (4): 4473–4492. arXiv:1706.05016. doi:10.1093/mnras/stx1522.
  54. ^ Pech, D.; Vauclair, G.; Dolez, N. (2006). "Asteroseismological constraints on the structure of the ZZ Ceti star HL Tau 76". Astronomy and Astrophysics. 446 (1): 223. Bibcode:2006A&A...446..223P. doi:10.1051/0004-6361:20053150.
  55. ^ Kawaler, Steven D.; Bradley, Paul A. (1994-05-01). "Precision Asteroseismology of Pulsating PG 1159 Stars". The Astrophysical Journal. 427: 415. Bibcode:1994ApJ...427..415K. doi:10.1086/174152. ISSN 0004-637X.
  56. ^ Iskandarli, Leyla; Farihi, Jay; Lothringer, Joshua D.; Parsons, Steven G.; De Marco, Orsola; Rauch, Thomas (2024-10-04). "Novel Constraints on Companions to the Helix Nebula Central Star". Monthly Notices of the Royal Astronomical Society. 534 (4): 3498. arXiv:2410.03288. Bibcode:2024MNRAS.534.3498I. doi:10.1093/mnras/stae2286.
  57. ^ a b Hallakoun, Na'ama; Maoz, Dan; Istrate, Alina G.; Badenes, Carles; Breedt, Elmé; Gänsicke, Boris T.; Jha, Saurabh W.; Leibundgut, Bruno; Mannucci, Filippo; Marsh, Thomas R.; Nelemans, Gijs; Patat, Ferdinando; Rebassa-Mansergas, Alberto (2023-08-14). "An irradiated-Jupiter analogue hotter than the Sun". Nature Astronomy. 7 (11): 1329–1340. arXiv:2306.08672. Bibcode:2023NatAs...7.1329H. doi:10.1038/s41550-023-02048-z. ISSN 2397-3366.
  58. ^ "Feige 55". Montreal White Dwarf Database. Retrieved 2024-05-30.
  59. ^ Wassermann, D.; Werner, K.; Rauch, T.; Kruk, J. W. (2010-12-01). "Metal abundances in the hottest known DO white dwarf (KPD 0005+5106)". Astronomy & Astrophysics. 524: A9. Bibcode:2010A&A...524A...9W. doi:10.1051/0004-6361/201015007. hdl:2060/20110020824. ISSN 0004-6361. S2CID 121234030.
  60. ^ Sion, Edward M.; Godon, Patrick; Mikolajewska, Joanna; Katynski, Marcus (2019-04-05). "FUSE Spectroscopic Analysis of the Slowest Symbiotic Nova AG Peg During Quiescence". The Astrophysical Journal. 874 (2): 178. arXiv:1902.10002. Bibcode:2019ApJ...874..178S. doi:10.3847/1538-4357/ab0c0a. ISSN 0004-637X.
  61. ^ Gies, Douglas R.; et al. (2020). "Spectroscopic Detection of the Pre-White Dwarf Companion of Regulus". The Astrophysical Journal. 902 (1). Table 3. arXiv:2009.02409. Bibcode:2020ApJ...902...25G. doi:10.3847/1538-4357/abb372.
  62. ^ Antoniadis, J.; Freire, P. C. C.; Wex, N.; Tauris, T. M.; Lynch, R. S.; Van Kerkwijk, M. H.; Kramer, M.; Bassa, C.; Dhillon, V. S.; Driebe, T.; Hessels, J. W. T.; Kaspi, V. M.; Kondratiev, V. I.; Langer, N.; Marsh, T. R.; McLaughlin, M. A.; Pennucci, T. T.; Ransom, S. M.; Stairs, I. H.; Van Leeuwen, J.; Verbiest, J. P. W.; Whelan, D. G. (2013). "A Massive Pulsar in a Compact Relativistic Binary". Science. 340 (6131): 1233232. arXiv:1304.6875. Bibcode:2013Sci...340..448A. doi:10.1126/science.1233232. PMID 23620056. S2CID 15221098.
  63. ^ Lodieu, N.; Zapatero Osorio, M. R.; Martín, E. L.; Rebolo López, R.; Gauza, B. (1 July 2022). "Physical properties and trigonometric distance of the peculiar dwarf WISE J181005.5−101002.3". Astronomy and Astrophysics. 663: A84. arXiv:2206.13097. Bibcode:2022A&A...663A..84L. doi:10.1051/0004-6361/202243516. ISSN 0004-6361. S2CID 249836684.
  64. ^ Vigan, A.; Bonnefoy, M.; Chauvin, G.; Moutou, C.; Montagnier, G. (2012-04-01). "High-contrast spectroscopy of SCR J1845-6357 B". Astronomy & Astrophysics. 540: A131. arXiv:1204.0241. Bibcode:2012A&A...540A.131V. doi:10.1051/0004-6361/201118426. ISSN 0004-6361.
  65. ^ a b c d e f g Cifuentes, C.; Caballero, J. A.; Cortés-Contreras, M.; Montes, D.; Abellán, F. J.; Dorda, R.; Holgado, G.; Zapatero Osorio, M. R.; Morales, J. C.; Amado, P. J.; Passegger, V. M.; Quirrenbach, A.; Reiners, A.; Ribas, I.; Sanz-Forcada, J. (2020-10-01). "CARMENES input catalogue of M dwarfs. V. Luminosities, colours, and spectral energy distributions". Astronomy and Astrophysics. 642: A115. arXiv:2007.15077. Bibcode:2020A&A...642A.115C. doi:10.1051/0004-6361/202038295. ISSN 0004-6361.
  66. ^ Ferguson, Donald H.; et al. (June 1999), "Masses and Other Parameters of the Post-Common Envelope Binary BE Ursae Majoris", The Astrophysical Journal, 518 (2): 866–872, Bibcode:1999ApJ...518..866F, doi:10.1086/307289, hdl:2299/1230, S2CID 17318851.
  67. ^ Vennes, S.; Nemeth, P.; Kawka, A.; Thorstensen, J. R.; Khalack, V.; Ferrario, L.; Alper, E. H. (2017-08-01). "An unusual white dwarf star may be a surviving remnant of a subluminous Type Ia supernova". Science. 357 (6352): 680–683. arXiv:1708.05568. Bibcode:2017Sci...357..680V. doi:10.1126/science.aam8378. ISSN 0036-8075. PMID 28818942.
  68. ^ Mamajek, Eric E.; Burgasser, Adam J. (2024-12-05). "SDSS J100711.74+193056.2: A Candidate Common Motion Substellar Companion to the Nearest B-Type Star Regulus". The Astronomical Journal. 169 (2): 77. arXiv:2412.04599. Bibcode:2025AJ....169...77M. doi:10.3847/1538-3881/ad991b.
  69. ^ Burgasser, Adam J.; Schneider, Adam C.; Meisner, Aaron M.; Caselden, Dan; Hsu, Chih-Chun; Gerasimov, Roman; Aganze, Christian; Softich, Emma; Karpoor, Preethi (2024-11-02). "New Cold Subdwarf Discoveries from Backyard Worlds and a Metallicity Classification System for T Subdwarfs". The Astrophysical Journal. 982 (2): 79. arXiv:2411.01378. Bibcode:2025ApJ...982...79B. doi:10.3847/1538-4357/adb39f.
  70. ^ a b King, R. R.; et al. (February 2010). "ɛ Indi Ba, Bb: a detailed study of the nearest known brown dwarfs". Astronomy and Astrophysics. 510: A99. arXiv:0911.3143. Bibcode:2010A&A...510A..99K. doi:10.1051/0004-6361/200912981. S2CID 53550866.
  71. ^ a b c Zhang, Zhoujian; Liu, Michael C.; Marley, Mark S.; Line, Michael R.; Best, William M. J. (2021-07-01). "Uniform Forward-Modeling Analysis of Ultracool Dwarfs. I. Methodology and Benchmarking". The Astrophysical Journal. 916 (1): 53. arXiv:2011.12294. Bibcode:2021ApJ...916...53Z. doi:10.3847/1538-4357/abf8b2. ISSN 0004-637X.
  72. ^ a b c d e f g h i j k l m Sanghi, Aniket; Liu, Michael C.; Best, William M. J.; Dupuy, Trent J.; Siverd, Robert J.; Zhang, Zhoujian; Hurt, Spencer A.; Magnier, Eugene A.; Aller, Kimberly M.; Deacon, Niall R. (2023-12-06). "The Hawaii Infrared Parallax Program. VI. The Fundamental Properties of 1000+ Ultracool Dwarfs and Planetary-mass Objects Using Optical to Mid-infrared Spectral Energy Distributions and Comparison to BT-Settl and ATMO 2020 Model Atmospheres". The Astrophysical Journal. 959 (1): 63. Bibcode:2023AAS...24120311S. doi:10.3847/1538-4357/acff66. ISSN 0004-637X.
  73. ^ Frost, William; Albert, Loïc; Doyon, René; Gagné, Jonathan; Montet, Benjamin T.; Fontanive, Clémence; Artigau, Étienne; Johnson, John Asher; Edwards, Billy (2024-08-09). "Revisiting physical parameters of the benchmark brown dwarf LHS 6343 C through a HST/WFC3 secondary eclipse observation". arXiv:2408.05173 [astro-ph.SR].
  74. ^ a b Xuan, Jerry W.; Perrin, Marshall D.; Mawet, Dimitri; Knutson, Heather A.; Mukherjee, Sagnick; Zhang, Yapeng; Hoch, Kielan K.; Wang, Jason J.; Inglis, Julie (2024-11-15). "Atmospheric abundances and bulk properties of the binary brown dwarf Gliese 229 Bab from JWST/MIRI spectroscopy". The Astrophysical Journal. 977 (2): L32. arXiv:2411.10571. Bibcode:2024ApJ...977L..32X. doi:10.3847/2041-8213/ad92f9.
  75. ^ Zhang, Zhoujian; Liu, Michael C.; Best, William M. J.; Dupuy, Trent J.; Siverd, Robert J. (2021-04-01). "The Hawaii Infrared Parallax Program. V. New T-dwarf Members and Candidate Members of Nearby Young Moving Groups". The Astrophysical Journal. 911 (1): 7. arXiv:2102.05045. Bibcode:2021ApJ...911....7Z. doi:10.3847/1538-4357/abe3fa. hdl:20.500.11820/e04ec38e-f54d-46a9-8839-cc38fbf8b9f4. ISSN 0004-637X.
  76. ^ a b Boetticher, Alexander von; Triaud, Amaury H. M. J.; Queloz, Didier; Gill, Sam; Maxted, Pierre F. L.; Almleaky, Yaseen; Anderson, David R.; Bouchy, François; Burdanov, Artem; Cameron, Andrew Collier; Delrez, Laetitia; Ducrot, Elsa; Faedi, Francesca; Gillon, Michaël; Chew, Yilen Gómez Maqueo (2019-05-01). "The EBLM Project - V. Physical properties of ten fully convective, very-low-mass stars". Astronomy & Astrophysics. 625: A150. arXiv:1903.10808. Bibcode:2019A&A...625A.150V. doi:10.1051/0004-6361/201834539. ISSN 0004-6361.
  77. ^ a b Dupuy, Trent J.; Liu, Michael C.; Best, William M. J.; Mann, Andrew W.; Tucker, Michael A.; Zhang, Zhoujian; Baraffe, Isabelle; Chabrier, Gilles; Forveille, Thierry; Metchev, Stanimir A.; Tremblin, Pascal; Do, Aaron; Payne, Anna V.; Shappee, B. J.; Bond, Charlotte Z.; Cetre, Sylvain; Chun, Mark; Delorme, Jacques-Robert; Jovanovic, Nemanja; Lilley, Scott; Mawet, Dimitri; Ragland, Sam; Wetherell, Ed; Wizinowich, Peter (10 October 2019). "WISE J072003.20-084651.2B is a Massive T Dwarf". The Astronomical Journal. 158 (5): 174. arXiv:1908.06994. Bibcode:2019AJ....158..174D. doi:10.3847/1538-3881/ab3cd1. S2CID 201103740.
  78. ^ a b c d e f g Carmichael, Theron W (March 2023). "Improved radius determinations for the transiting brown dwarf population in the era of Gaia and TESS". Monthly Notices of the Royal Astronomical Society. 519 (4): 5177–5190. arXiv:2212.02502. doi:10.1093/mnras/stac3720. ISSN 0035-8711.
  79. ^ "The Extrasolar Planet Encyclopaedia — Luhman 16 A". Extrasolar Planets Encyclopaedia. Paris Observatory.
  80. ^ a b c d Dieterich, Serge B.; Simler, Andrew; Henry, Todd J.; Jao, Wei-Chun (April 2021). "The Solar Neighborhood. XLVII. Comparing M-dwarf Models with Hubble Space Telescope Dynamical Masses and Spectroscopy". The Astronomical Journal. 161 (4): 172. arXiv:2012.00915. Bibcode:2021AJ....161..172D. doi:10.3847/1538-3881/abd2c2.
  81. ^ a b Dieterich, Sergio B.; Henry, Todd J.; Jao, Wei-Chun; Winters, Jennifer G.; Hosey, Altonio D.; Riedel, Adric R.; Subasavage, John P. (May 2014). "The Solar Neighborhood XXXII. The Hydrogen Burning Limit". The Astronomical Journal. 147 (5). article id 94. arXiv:1312.1736. Bibcode:2014AJ....147...94D. doi:10.1088/0004-6256/147/5/94. S2CID 21036959.
  82. ^ "SSSPM J0829-1309: A New nearby L dwarf detected in superCOSMOS Sky Surveys". inspirehep.net. Retrieved November 21, 2021.
  83. ^ Li, Yiting; Brandt, Timothy D.; Franson, Kyle; An, Qier; Tobin, Taylor; Currie, Thayne; Chen, Minghan; Wang, Lanxuan; Dupuy, Trent J. (2024-08-02). "The Keck-HGCA Pilot Survey II: Direct Imaging Discovery of HD 63754 B, a ~20 au Massive Companion Near the Hydrogen Burning Limit". Monthly Notices of the Royal Astronomical Society. 533 (3): 3501. arXiv:2408.01546. Bibcode:2024MNRAS.533.3501L. doi:10.1093/mnras/stae1903.
  84. ^ Balmer, William O.; Pueyo, Laurent; Stolker, Tomas; Reggiani, Henrique; Maire, A.-L.; Lacour, S.; Mollière, P.; Nowak, M.; Sing, D.; Pourré, N.; Blunt, S.; Wang, J. J.; Rickman, E.; Kammerer, J.; Henning, Th. (2023-10-01). "VLTI/GRAVITY Observations and Characterization of the Brown Dwarf Companion HD 72946 B". The Astrophysical Journal. 956 (2): 99. arXiv:2309.04403. Bibcode:2023ApJ...956...99B. doi:10.3847/1538-4357/acf761. ISSN 0004-637X.
  85. ^ Burgasser, Adam J.; Burrows, Adam; Kirkpatrick, J. Davy (2006). "Method for Determining the Physical Properties of the Coldest Known Brown Dwarfs". The Astrophysical Journal. 639 (2): 1095–1113. arXiv:astro-ph/0510707. Bibcode:2006ApJ...639.1095B. doi:10.1086/499344. S2CID 9291848.
  86. ^ a b c Tannock, Megan E.; Metchev, Stanimir; Heinze, Aren; Miles-Páez, Paulo A.; Gagné, Jonathan; Burgasser, Adam; et al. (March 2021). "Weather on Other Worlds. V. The Three Most Rapidly Rotating Ultra-cool Dwarfs". The Astronomical Journal. 161 (5): 224. arXiv:2103.01990. Bibcode:2021AJ....161..224T. doi:10.3847/1538-3881/abeb67. S2CID 232105126.
  87. ^ a b Dupuy, Trent J.; et al. (2015). "Discovery of a Low-luminosity, Tight Substellar Binary at the T/Y Transition". The Astrophysical Journal. 803 (2). 102. arXiv:1502.04707. Bibcode:2015ApJ...803..102D. doi:10.1088/0004-637X/803/2/102. S2CID 118507808.
  88. ^ a b Liu, Michael C.; Leggett, S. K. (2005). "Kelu-1 Is a Binary L Dwarf: First Brown Dwarf Science from Laser Guide Star Adaptive Optics". The Astrophysical Journal. 634 (1): 616–624. arXiv:astro-ph/0508082. Bibcode:2005ApJ...634..616L. doi:10.1086/496915. S2CID 16185006.
  89. ^ a b Gonzales, Eileen C.; Burningham, Ben; Faherty, Jacqueline K.; Cleary, Colleen; Visscher, Channon; Marley, Mark S.; Lupu, Roxana; Freedman, Richard (2020-12-10). "Retrieval of the d/sdL7+T7.5p Binary SDSS J1416+1348AB". The Astrophysical Journal. 905 (1): 46. arXiv:2010.01224. Bibcode:2020ApJ...905...46G. doi:10.3847/1538-4357/abbee2. ISSN 0004-637X.
  90. ^ a b c d Filippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline; Cruz, Kelle L.; Van Gordon, Mollie M.; Looper, Dagny L. (2015-09-10). "Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime". The Astrophysical Journal. 810 (2): 158. arXiv:1508.01767. Bibcode:2015ApJ...810..158F. doi:10.1088/0004-637X/810/2/158. ISSN 1538-4357.
  91. ^ Kothari, Harshil; Cushing, Michael C.; Burningham, Ben; Beiler, Samuel A.; Kirkpatrick, J. Davy; Schneider, Adam C.; Mukherjee, Sagnick; Marley, Mark S. (10 June 2024). "Probing the Heights and Depths of Y Dwarf Atmospheres: A Retrieval Analysis of the JWST Spectral Energy Distribution of WISE J035934.06−540154.6". The Astrophysical Journal. 971 (2): 121. arXiv:2406.06493. Bibcode:2024ApJ...971..121K. doi:10.3847/1538-4357/ad583b.
  92. ^ Hallinan, G.; Antonova, A.; Doyle, J. G.; Bourke, S.; Lane, C.; Golden, A. (2008-09-01). "Confirmation of the Electron Cyclotron Maser Instability as the Dominant Source of Radio Emission from Very Low Mass Stars and Brown Dwarfs". The Astrophysical Journal. 684 (1): 644. arXiv:0805.4010. Bibcode:2008ApJ...684..644H. doi:10.1086/590360. ISSN 0004-637X.
  93. ^ Faherty, Jacqueline K.; Burningham, Ben; Gagné, Jonathan; Suárez, Genaro; Vos, Johanna M.; Alejandro Merchan, Sherelyn; Morley, Caroline V.; Rowland, Melanie; Lacy, Brianna; Kiman, Rocio; Caselden, Dan; Kirkpatrick, J. Davy; Meisner, Aaron; Schneider, Adam C.; Kuchner, Marc Jason; Bardalez Gagliuffi, Daniella Carolina; Beichman, Charles; Eisenhardt, Peter; Gelino, Christopher R.; Gharib-Nezhad, Ehsan; Gonzales, Eileen; Marocco, Federico; Rothermich, Austin James; Whiteford, Niall (2024-04-17). "Methane emission from a cool brown dwarf". Nature. 628 (8008): 511–514. arXiv:2404.10977. Bibcode:2024Natur.628..511F. doi:10.1038/s41586-024-07190-w. ISSN 1476-4687. PMC 11023930. PMID 38632480.
  94. ^ a b Faherty, Jacqueline K.; Goodman, Sam; Caselden, Dan; Colin, Guillaume; Kuchner, Marc J.; Meisner, Aaron M.; Gagné, Jonathan; Schneider, Adam C.; Gonzales, Eileen C.; Bardalez Gagliuffi, Daniella C.; Logsdon, Sarah E.; Allers, Katelyn; Burgasser, Adam J.; The Backyard Worlds Planet 9 Collaboration (February 2020). "WISE 2150-7520AB: A Very Low-mass, Wide Comoving Brown Dwarf System Discovered through the Citizen Science Project Backyard Worlds: Planet 9". Astrophysical Journal. 889 (2): 176. arXiv:1911.04600. Bibcode:2020ApJ...889..176F. doi:10.3847/1538-4357/ab5303. ISSN 0004-637X. S2CID 207863267.
  95. ^ a b Köhler, R.; Ratzka, T.; Leinert, Ch (2012-05-01). "Orbits and masses in the multiple system LHS 1070". Astronomy & Astrophysics. 541: A29. arXiv:1203.6270. Bibcode:2012A&A...541A..29K. doi:10.1051/0004-6361/201118707. ISSN 0004-6361.
  96. ^ a b c Rajpurohit, A. S.; Reyle, C.; Schultheis, M.; Leinert, Ch; Allard, F.; Homeier, D.; Ratzka, T.; Abraham, P.; Moster, B. (2012-08-02). "The very low mass multiple system LHS\,1070 -- a testbed for model atmospheres for the lower end of the main sequence". Astronomy & Astrophysics. 545: A85. arXiv:1208.0452. Bibcode:2012A&A...545A..85R. doi:10.1051/0004-6361/201219029.
  97. ^ Morsy, Mona El; Currie, Thayne; Bovie, Danielle; Kuzuhara, Masayuki; Lacy, Brianna; Li, Yiting; Tobin, Taylor; Brandt, Timothy; Chilcote, Jeffrey (2024-07-29). "Dynamical and Atmospheric Characterization of the Substellar Companion HD 33632 Ab from Direct Imaging, Astrometry, and Radial-Velocity Data". arXiv:2407.20322v1 [astro-ph.EP].
  98. ^ Bowler, Brendan P.; Liu, Michael C.; Cushing, Michael C. (2009). "The Benchmark Ultracool Subdwarf HD 114762B: A Test of Low-metallicity Atmospheric and Evolutionary Models". The Astrophysical Journal. 706 (2): 1114. arXiv:0910.1604. Bibcode:2009ApJ...706.1114B. doi:10.1088/0004-637X/706/2/1114. S2CID 119112746.
  99. ^ Burgarella, D.; Vogel, M.; Paresce, F. (1992). "R Aquarii : An attempt at a unified model". Astronomy and Astrophysics. 262: 83. Bibcode:1992A&A...262...83B.
  100. ^ Díaz, R. F.; Montagnier, G.; Leconte, J.; Bonomo, A. S.; Deleuil, M.; Almenara, J. M.; Barros, S. C. C.; Bouchy, F.; Bruno, G.; Damiani, C.; Hébrard, G.; Moutou, C.; Santerne, A. (2014-12-01). "SOPHIE velocimetry of Kepler transit candidates - XIII. KOI-189 b and KOI-686 b: two very low-mass stars in long-period orbits". Astronomy & Astrophysics. 572: A109. arXiv:1410.5248. Bibcode:2014A&A...572A.109D. doi:10.1051/0004-6361/201424406. ISSN 0004-6361.
  101. ^ a b Zapatero Osorio, M. R.; Lane, B. F.; Pavlenko, Ya.; Martin, E. L.; Britton, M.; Kulkarni, S. R. (2004-11-10). "Dynamical Masses of the Binary Brown Dwarf GJ 569 Bab". The Astrophysical Journal. 615 (2): 958–971. arXiv:astro-ph/0407334. Bibcode:2004ApJ...615..958Z. doi:10.1086/424507. ISSN 0004-637X.
  102. ^ Crepp, Justin R.; et al. (June 2012). "The Dynamical Mass and Three-Dimensional Orbit of HR7672B: A Benchmark Brown Dwarf with High Eccentricity". The Astrophysical Journal. 751 (2): 14. arXiv:1112.1725. Bibcode:2012ApJ...751...97C. doi:10.1088/0004-637X/751/2/97. S2CID 16113054. 97.
  103. ^ Neustroev, Vitaly V.; Mäntynen, Iikka (2023-08-01). "A brown dwarf donor and an optically thin accretion disc with a complex stream impact region in the period-bouncer candidate BW Sculptoris". Monthly Notices of the Royal Astronomical Society. 523 (4): 6114–6137. arXiv:2212.03264. Bibcode:2023MNRAS.523.6114N. doi:10.1093/mnras/stad1730. ISSN 0035-8711.
  104. ^ Eggl, S.; Pilat-Lohinger, E.; Funk, B.; Georgakarakos, N.; Haghighipour, N. (2013-02-01). "Circumstellar habitable zones of binary-star systems in the solar neighbourhood". Monthly Notices of the Royal Astronomical Society. 428 (4): 3104–3113. arXiv:1210.5411. Bibcode:2013MNRAS.428.3104E. doi:10.1093/mnras/sts257. ISSN 0035-8711.
  105. ^ "The Extrasolar Planet Encyclopaedia — Luhman 16 B". Extrasolar Planets Encyclopaedia. Paris Observatory.
  106. ^ Tsuji, Takashi; Nakajima, Tadashi (2016-02-01). "Near-infrared spectroscopy of M dwarfs. III. Carbon and oxygen abundances in late M dwarfs, including the dusty rapid rotator 2MASSI J1835379+325954†". Publications of the Astronomical Society of Japan. 68 (1): 13. arXiv:1511.04682. Bibcode:2016PASJ...68...13T. doi:10.1093/pasj/psv119. ISSN 0004-6264.
  107. ^ Lienhard, F.; Queloz, D.; Gillon, M.; Burdanov, A.; Delrez, L.; Ducrot, E.; Handley, W.; Jehin, E.; Murray, C. A.; Triaud, A H M J.; Gillen, E.; Mortier, A.; Rackham, B. V. (2020). "Global analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey". Monthly Notices of the Royal Astronomical Society. 497 (3): 3790–3808. arXiv:2007.07278. Bibcode:2020MNRAS.497.3790L. doi:10.1093/mnras/staa2054.
  108. ^ Baron, Frédérique; Lafrenière, David; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Davison, Cassy L.; Malo, Lison; Robert, Jasmin; Nadeau, Daniel; Reylé, Céline (2015-03-01). "Discovery and Characterization of Wide Binary Systems with a Very Low Mass Component". The Astrophysical Journal. 802 (1): 37. arXiv:1501.05925. Bibcode:2015ApJ...802...37B. doi:10.1088/0004-637X/802/1/37. ISSN 0004-637X.
  109. ^ Deacon, Niall R.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.; Best, William M. J.; Dupuy, Trent; Bowler, Brendan P.; Mann, Andrew W.; Redstone, Joshua A.; Burgett, William S.; Chambers, Kenneth C.; Draper, Peter W.; Flewelling, H.; Hodapp, Klaus W.; Kaiser, Nick (2014-09-01). "Wide Cool and Ultracool Companions to Nearby Stars from Pan-STARRS 1". The Astrophysical Journal. 792 (2): 119. arXiv:1407.2938. Bibcode:2014ApJ...792..119D. doi:10.1088/0004-637X/792/2/119. ISSN 0004-637X.
  110. ^ Ruiz, Maria Teresa; Takamiya, Marianne Y.; Roth, Miguel (1991). "ESO 207-61: A Brown Dwarf Candidate in the Hyades Moving Group". The Astrophysical Journal. 367: L59. Bibcode:1991ApJ...367L..59R. doi:10.1086/185931.
  111. ^ Zhu, Wei; Huang, Chelsea; Zhou, George; Lin, D.N.C. (2014). "Constraining the Oblateness of Kepler Planets". The Astrophysical Journal. 796 (1): 67. arXiv:1410.0361. Bibcode:2014ApJ...796...67Z. doi:10.1088/0004-637X/796/1/67. S2CID 119280657.
  112. ^ a b Carmichael, Theron W.; et al. (August 2022). "TOI-2119: a transiting brown dwarf orbiting an active M-dwarf from NASA's TESS mission". Monthly Notices of the Royal Astronomical Society. 514 (4): 4944–4957. arXiv:2202.08842. Bibcode:2022MNRAS.514.4944C. doi:10.1093/mnras/stac1666. S2CID 246996780.
  113. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af Pineda, J. Sebastian; et al. (September 2021). "The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars". The Astrophysical Journal. 918 (1): 23. arXiv:2106.07656. Bibcode:2021ApJ...918...40P. doi:10.3847/1538-4357/ac0aea. S2CID 235435757. 40.
  114. ^ Tu, Zhijun; Wang, Shu; Liu, Jifeng (2024-09-27). "Physical Parameters and Properties of 20 Cold Brown Dwarfs in JWST". The Astrophysical Journal. 976 (1): 82. arXiv:2409.19191. Bibcode:2024ApJ...976...82T. doi:10.3847/1538-4357/ad815a.
  115. ^ Pérez Garrido, A.; Lodieu, N.; Béjar, V. J. S.; Ruiz, M. T.; Gauza, B.; Rebolo, R.; Zapatero Osorio, M. R. (2014). "2MASS J154043.42-510135.7: a new addition to the 5 pc population". Astronomy & Astrophysics. 567: A6. arXiv:1405.5439. Bibcode:2014A&A...567A...6P. doi:10.1051/0004-6361/201423615. S2CID 118704532.
  116. ^ a b c d e f Cifuentes, C.; Caballero, J. A.; González-Payo, J.; Amado, P. J.; Béjar, V. J. S.; Burgasser, A. J.; Cortés-Contreras, M.; Lodieu, N.; Montes, D.; Quirrenbach, A.; Reiners, A.; Ribas, I.; Sanz-Forcada, J.; Seifert, W.; Zapatero Osorio, M. R. (January 2025). "CARMENES input catalogue of M dwarfs. IX. Multiplicity from close spectroscopic binaries to ultra-wide systems". Astronomy and Astrophysics. 693: A228. arXiv:2412.12264. Bibcode:2025A&A...693A.228C. doi:10.1051/0004-6361/202452527. ISSN 0004-6361.
  117. ^ Agol, Eric; Dorn, Caroline; Grimm, Simon L.; Turbet, Martin; Ducrot, Elsa; Delrez, Laetitia; Gillon, Michaël; Demory, Brice-Olivier; Burdanov, Artem; Barkaoui, Khalid; Benkhaldoun, Zouhair; Bolmont, Emeline; Burgasser, Adam; Carey, Sean; de Wit, Julien; Fabrycky, Daniel; Foreman-Mackey, Daniel; Haldemann, Jonas; Hernandez, David M.; Ingalls, James; Jehin, Emmanuel; Langford, Zachary; Leconte, Jérémy; Lederer, Susan M.; Luger, Rodrigo; Malhotra, Renu; Meadows, Victoria S.; Morris, Brett M.; Pozuelos, Francisco J.; Queloz, Didier; Raymond, Sean N.; Selsis, Franck; Sestovic, Marko; Triaud, Amaury H. M. J.; Van Grootel, Valérie (1 February 2021). "Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides". The Planetary Science Journal. 2 (1): 1. arXiv:2010.01074. Bibcode:2021PSJ.....2....1A. doi:10.3847/psj/abd022. ISSN 2632-3338. S2CID 222125312.
  118. ^ a b Pont, F.; Melo, C. H. F.; Bouchy, F.; Udry, S.; Queloz, D.; Mayor, M.; Santos, N. C. (2005). "A planet-sized transiting star around OGLE-TR-122". Astronomy and Astrophysics. 433 (2): L21. arXiv:astro-ph/0501611. Bibcode:2005A&A...433L..21P. doi:10.1051/0004-6361:200500025. S2CID 14799999.
  119. ^ Dreizler, S.; Luque, R.; et al. (April 2024). "Teegarden's Star revisited: A nearby planetary system with at least three planets". Astronomy & Astrophysics. 684: A117. arXiv:2402.00923. Bibcode:2024A&A...684A.117D. doi:10.1051/0004-6361/202348033.
  120. ^ Gillon, Michaël; Pedersen, Peter P.; Rackham, Benjamin V.; Dransfield, Georgina; Ducrot, Elsa; Barkaoui, Khalid; Burdanov, Artem Y.; Schroffenegger, Urs; Gómez Maqueo Chew, Yilen; Lederer, Susan M.; Alonso, Roi; Burgasser, Adam J.; Howell, Steve B.; Narita, Norio; de Wit, Julien (2024-05-15). "Detection of an Earth-sized exoplanet orbiting the nearby ultracool dwarf star SPECULOOS-3". Nature Astronomy. 8 (7): 865–878. arXiv:2406.00794. Bibcode:2024NatAs...8..865G. doi:10.1038/s41550-024-02271-2. ISSN 2397-3366.
  121. ^ a b c Xuan, Jerry W.; Hsu, Chih-Chun; Finnerty, Luke; Wang, Jason; Ruffio, Jean-Baptiste; Zhang, Yapeng; Knutson, Heather A.; Mawet, Dimitri; Mamajek, Eric E.; Inglis, Julie; Wallack, Nicole L.; Bryan, Marta L.; Blake, Geoffrey A.; Mollière, Paul; Hejazi, Neda (2024-07-01). "Are These Planets or Brown Dwarfs? Broadly Solar Compositions from High-resolution Atmospheric Retrievals of ∼10–30 M Jup Companions". The Astrophysical Journal. 970 (1): 71. arXiv:2405.13128. Bibcode:2024ApJ...970...71X. doi:10.3847/1538-4357/ad4796. ISSN 0004-637X.
  122. ^ a b c d e Hardegree-Ullman, Kevin K.; Apai, Dániel; Bergsten, Galen J.; Pascucci, Ilaria; López-Morales, Mercedes (2023-06-01). "Bioverse: A Comprehensive Assessment of the Capabilities of Extremely Large Telescopes to Probe Earth-like O2 Levels in Nearby Transiting Habitable-zone Exoplanets". The Astronomical Journal. 165 (6): 267. arXiv:2304.12490. Bibcode:2023AJ....165..267H. doi:10.3847/1538-3881/acd1ec. ISSN 0004-6256.
  123. ^ Dupuy, Trent J; Liu, Michael C; Evans, Elise L; Best, William M J; Pearce, Logan A; Sanghi, Aniket; Phillips, Mark W; Bardalez Gagliuffi, Daniella C (2022-12-06). "On the masses, age, and architecture of the VHS J1256−1257AB b system". Monthly Notices of the Royal Astronomical Society. 519 (2): 1688–1694. doi:10.1093/mnras/stac3557. ISSN 0035-8711.
  124. ^ a b c d e f g Mann, Andrew W.; et al. (May 2015). "How to Constrain Your M Dwarf: Measuring Effective Temperature, Bolometric Luminosity, Mass, and Radius". The Astrophysical Journal. 804 (1): 38. arXiv:1501.01635. Bibcode:2015ApJ...804...64M. doi:10.1088/0004-637X/804/1/64. S2CID 19269312. 64.
  125. ^ Wood, Janet H.; et al. (1989). "Eclipse studies of the dwarf nova OY Carinae in quiescence". Astrophysical Journal. 341: 974–994. Bibcode:1989ApJ...341..974W. doi:10.1086/167557.
  126. ^ Rodriguez, Joseph E.; Stassun, Keivan G.; Lund, Michael B.; Siverd, Robert J.; Pepper, Joshua; Tang, Sumin; Kafka, Stella; Gaudi, B. Scott; Conroy, Kyle E.; Beatty, Thomas G.; Stevens, Daniel J.; Shappee, Benjamin J.; Kochanek, Christopher S. (April 2016). "AN EXTREME ANALOGUE OF ϵ AURIGAE: AN M-GIANT ECLIPSED EVERY 69 YEARS BY A LARGE OPAQUE DISK SURROUNDING A SMALL HOT SOURCE". The Astronomical Journal. 151 (5): 123. arXiv:1601.00135. Bibcode:2016AJ....151..123R. doi:10.3847/0004-6256/151/5/123. ISSN 1538-3881.
  127. ^ a b c d e f g h i j Houdebine, Éric R.; Mullan, D. J.; Doyle, J. G.; de la Vieuville, Geoffroy; Butler, C. J.; Paletou, F. (2019). "The Mass–Activity Relationships in M and K Dwarfs. I. Stellar Parameters of Our Sample of M and K Dwarfs". The Astronomical Journal. 158 (2): 56. arXiv:1905.07921. Bibcode:2019AJ....158...56H. doi:10.3847/1538-3881/ab23fe. S2CID 159041104.
  128. ^ a b c Hillenbrand, Lynne A.; White, Russel J. (2004-04-01). "An Assessment of Dynamical Mass Constraints on Pre-Main-Sequence Evolutionary Tracks". The Astrophysical Journal. 604 (2): 741. arXiv:astro-ph/0312189. Bibcode:2004ApJ...604..741H. doi:10.1086/382021. ISSN 0004-637X.
  129. ^ a b Dedrick, Cayla M.; Wright, Jason T.; et al. (May 2025). "Three-dimensional Orbit and Dynamical Masses of GJ 105 AC". The Astrophysical Journal. 985 (2): 255. arXiv:2505.08042. Bibcode:2025ApJ...985..255D. doi:10.3847/1538-4357/adc564.
  130. ^ Hurt, Spencer A.; Liu, Michael C.; et al. (January 2024). "Uniform Forward-modeling Analysis of Ultracool Dwarfs. III. Late-M and L Dwarfs in Young Moving Groups, the Pleiades, and the Hyades". The Astrophysical Journal. 961 (1): 121. arXiv:2311.04268. Bibcode:2024ApJ...961..121H. doi:10.3847/1538-4357/ad0b12. Parameters taken from Table 6. The parameters in other tables derived from atmospheric modeling are unreliable, as discussed in the text.
  131. ^ a b c Fuhrmann, Klaus (2008). "Nearby stars of the Galactic disc and halo - IV". Monthly Notices of the Royal Astronomical Society. 384 (1): 173–224. Bibcode:2008MNRAS.384..173F. doi: