List of pitch intervals

Comparison between tunings: Pythagorean, equal-tempered, quarter-comma meantone, and others. For each, the common origin is arbitrarily chosen as C. The degrees are arranged in the order or the cycle of fifths; as in each of these tunings except just intonation all fifths are of the same size, the tunings appear as straight lines, the slope indicating the relative tempering with respect to Pythagorean, which has pure fifths (3:2, 702 cents). The Pythagorean A (at the left) is at 792 cents, G (at the right) at 816 cents; the difference is the Pythagorean comma. Equal temperament by definition is such that A and G are at the same level. 14-comma meantone produces the "just" major third (5:4, 386 cents, a syntonic comma lower than the Pythagorean one of 408 cents). 13-comma meantone produces the "just" minor third (6:5, 316 cents, a syntonic comma higher than the Pythagorean one of 294 cents). In both these meantone temperaments, the enharmony, here the difference between A and G, is much larger than in Pythagorean, and with the flat degree higher than the sharp one.
Comparison of two sets of musical intervals. The equal-tempered intervals are black; the Pythagorean intervals are green.

Below is a list of intervals expressible in terms of a prime limit (see Terminology), completed by a choice of intervals in various equal subdivisions of the octave or of other intervals.

For commonly encountered harmonic or melodic intervals between pairs of notes in contemporary Western music theory, without consideration of the way in which they are tuned, see Interval (music) § Main intervals.

Terminology

[edit]
  • The prime limit[1] henceforth referred to simply as the limit, is the largest prime number occurring in the factorizations of the numerator and denominator of the frequency ratio describing a rational interval. For instance, the limit of the just perfect fourth (4:3) is 3, but the just minor tone (10:9) has a limit of 5, because 10 can be factored into 2 × 5 (and 9 into 3 × 3). There exists another type of limit, the odd limit, a concept used by Harry Partch (bigger of odd numbers obtained after dividing numerator and denominator by highest possible powers of 2), but it is not used here. The term "limit" was devised by Partch.[1]
  • By definition, every interval in a given limit can also be part of a limit of higher order. For instance, a 3-limit unit can also be part of a 5-limit tuning and so on. By sorting the limit columns in the table below, all intervals of a given limit can be brought together (sort backwards by clicking the button twice).
  • Pythagorean tuning means 3-limit intonation—a ratio of numbers with prime factors no higher than three.
  • Just intonation means 5-limit intonation—a ratio of numbers with prime factors no higher than five.
  • Septimal, undecimal, tridecimal, and septendecimal mean, respectively, 7, 11, 13, and 17-limit intonation.
  • Meantone refers to meantone temperament, where the whole tone is the mean of the major third. In general, a meantone is constructed in the same way as Pythagorean tuning, as a stack of fifths: the tone is reached after two fifths, the major third after four, so that as all fifths are the same, the tone is the mean of the third. In a meantone temperament, each fifth is narrowed ("tempered") by the same small amount. The most common of meantone temperaments is the quarter-comma meantone, in which each fifth is tempered by 14 of the syntonic comma, so that after four steps the major third (as C-G-D-A-E) is a full syntonic comma lower than the Pythagorean one. The extremes of the meantone systems encountered in historical practice are the Pythagorean tuning, where the whole tone corresponds to 9:8, i.e. (3:2)2/2, the mean of the major third (3:2)4/4, and the fifth (3:2) is not tempered; and the 13-comma meantone, where the fifth is tempered to the extent that three ascending fifths produce a pure minor third.(See meantone temperaments). The music program Logic Pro uses also 12-comma meantone temperament.
  • Equal-tempered refers to X-tone equal temperament with intervals corresponding to X divisions per octave.
  • Tempered intervals however cannot be expressed in terms of prime limits and, unless exceptions, are not found in the table below.
  • The table can also be sorted by frequency ratio, by cents, or alphabetically.
  • Superparticular ratios are intervals that can be expressed as the ratio of two consecutive integers.

List

[edit]
Column Legend
TET X-tone equal temperament (12-tet, etc.).
Limit 3-limit intonation, or Pythagorean.
5-limit "just" intonation, or just.
7-limit intonation, or septimal.
11-limit intonation, or undecimal.
13-limit intonation, or tridecimal.
17-limit intonation, or septendecimal.
19-limit intonation, or novendecimal.
Higher limits.
M Meantone temperament or tuning.
S Superparticular ratio (no separate color code).
List of musical intervals
Cents Note (from C) Freq. ratio Prime factors Interval name TET Limit M S
0.00
C[2] 1 : 1 1 : 1 play Unison,[3] monophony,[4] perfect prime,[3] tonic,[5] or fundamental 1, 12 3 M
0.03
65537 : 65536 65537 : 216 play Sixty-five-thousand-five-hundred-thirty-seventh harmonic 65537 S
0.40
C7 4375 : 4374 54×7 : 2×37 play Ragisma[3][6] 7 S
0.72
E7777triple flat+ 2401 : 2400 74 : 25×3×52 play Breedsma[3][6] 7 S
1.00
21/1200 21/1200 play Cent[7] 1200
1.20
21/1000 21/1000 play Millioctave 1000
1.95
B++ 32805 : 32768 38×5 : 215 play Schisma[3][5] 5
1.96
3:2÷(27/12) 3 : 219/12 Grad, Werckmeister[8]
3.99
101/1000 21/1000×51/1000 play Savart or eptaméride 301.03
7.71
B7 upside-down 225 : 224 32×52 : 25×7 play Septimal kleisma,[3][6] marvel comma 7 S
8.11
Bdouble sharp 15625 : 15552 56 : 26×35 play Kleisma or semicomma majeur[3][6] 5
10.06
Adouble sharpdouble sharp++ 2109375 : 2097152 33×57 : 221 play Semicomma,[3][6] Fokker's comma[3] 5
10.85
C43U 160 : 159 25×5 : 3×53 play Difference between 5:3 & 53:32 53 S
11.98
C29 145 : 144 5×29 : 24×32 play Difference between 29:16 & 9:5 29 S
12.50
21/96 21/96 play Sixteenth tone 96
13.07
B7 upside-down7 upside-down7 upside-down 1728 : 1715 26×33 : 5×73 play Orwell comma[3][9] 7
13.47
C43 129 : 128 3×43 : 27 play Hundred-twenty-ninth harmonic 43 S
13.79
Ddouble flat7 126 : 125 2×32×7 : 53 play Small septimal semicomma,[6] small septimal comma,[3] starling comma 7 S
14.37
C 121 : 120 112 : 23×3×5 play Undecimal seconds comma[3] 11 S
16.67
C[a] 21/72 21/72 play 1 step in 72 equal temperament 72
18.13
C19U 96 : 95 25×3 : 5×19 play Difference between 19:16 & 6:5 19 S
19.55
Ddouble flat--[2] 2048 : 2025 211 : 34×52 play Diaschisma,[3][6] minor comma 5
21.51
C+[2] 81 : 80 34 : 24×5 play Syntonic comma,[3][5][6] major comma, komma, chromatic diesis, or comma of Didymus[3][6][10][11] 5 S
22.64
21/53 21/53 play Holdrian comma, Holder's comma, 1 step in 53 equal temperament 53
23.46
B+++ 531441 : 524288 312 : 219 play Pythagorean comma,[3][5][6][10][11] ditonic comma[3][6] 3
25.00
21/48 21/48 play Eighth tone 48
26.84
C13 65 : 64 5×13 : 26 play Sixty-fifth harmonic,[5] 13th-partial chroma[3] 13 S
27.26
C7 upside-down 64 : 63 26 : 32×7 play Septimal comma,[3][6][11] Archytas' comma,[3] 63rd subharmonic 7 S
29.27
21/41 21/41 play 1 step in 41 equal temperament 41
31.19
D7 56 : 55 23×7 : 5×11 play Undecimal diesis,[3] Ptolemy's enharmonic:[5] difference between (11 : 8) and (7 : 5) tritone 11 S
33.33
C/D[a] 21/36 21/36 play Sixth tone 36, 72
34.28
C17 51 : 50 3×17 : 2×52 play Difference between 17:16 & 25:24 17 S
34.98
B7 upside-down7 upside-down- 50 : 49 2×52 : 72 play Septimal sixth tone or jubilisma, Erlich's decatonic comma or tritonic diesis[3][6] 7 S
35.70
D77 49 : 48 72 : 24×3 play Septimal diesis, slendro diesis or septimal 1/6-tone[3] 7 S
38.05
C23 46 : 45 2×23 : 32×5 play Inferior quarter tone,[5] difference between 23:16 & 45:32 23 S
38.71
21/31 21/31 play 1 step in 31 equal temperament or Normal Diesis 31
38.91
C+ 45 : 44 32×5 : 4×11 play Undecimal diesis or undecimal fifth tone 11 S
40.00
21/30 21/30 play Fifth tone 30
41.06
Ddouble flat 128 : 125 27 : 53 play Enharmonic diesis or 5-limit limma, minor diesis,[6] diminished second,[5][6] minor diesis or diesis,[3] 125th subharmonic 5
41.72
D41U7 42 : 41 2×3×7 : 41 play Lesser 41-limit fifth tone 41 S
42.75
C41 41 : 40 41 : 23×5 play Greater 41-limit fifth tone 41 S
43.83
C13 upside down 40 : 39 23×5 : 3×13 play Tridecimal fifth tone 13 S
44.97
C19U13 39 : 38 3×13 : 2×19 play Superior quarter-tone,[5] novendecimal fifth tone 19 S
46.17
D37U19double flat- 38 : 37 2×19 : 37 play Lesser 37-limit quarter tone 37 S
47.43
C37 37 : 36 37 : 22×32 play Greater 37-limit quarter tone 37 S
48.77
C7 upside-down 36 : 35 22×32 : 5×7 play Septimal quarter tone, septimal diesis,[3][6] septimal chroma,[2] superior quarter tone[5] 7 S
49.98
246 : 239 3×41 : 239 play Just quarter tone[11] 239
50.00
Chalf sharp/Dthree quarter flat 21/24 21/24 play Equal-tempered quarter tone 24
50.18
D17 upside down7 35 : 34 5×7 : 2×17 play ET quarter-tone approximation,[5] lesser 17-limit quarter tone 17 S
50.72
B7 upside-down++ 59049 : 57344 310 : 213×7 play Harrison's comma (10 P5s – 1 H7)[3] 7
51.68
C17 34 : 33 2×17 : 3×11 play Greater 17-limit quarter tone 17 S
53.27
C 33 : 32 3×11 : 25 play Thirty-third harmonic,[5] undecimal comma, undecimal quarter tone 11 S
54.96
D31U- 32 : 31 25 : 31 play Inferior quarter-tone,[5] thirty-first subharmonic 31 S
56.55
B2323+ 529 : 512 232 : 29 play Five-hundred-twenty-ninth harmonic 23
56.77
C31 31 : 30 31 : 2×3×5 play Greater quarter-tone,[5] difference between 31:16 & 15:8 31 S
58.69
C29U 30 : 29 2×3×5 : 29 play Lesser 29-limit quarter tone 29 S
60.75
C297 upside-down 29 : 28 29 : 22×7 play Greater 29-limit quarter tone 29 S
62.96
D7- 28 : 27 22×7 : 33 play Septimal minor second, small minor second, inferior quarter tone[5] 7 S
63.81
(3 : 2)1/11 31/11 : 21/11 play Beta scale step 18.80
65.34
C13 upside down+ 27 : 26 33 : 2×13 play Chromatic diesis,[12] tridecimal comma[3] 13 S
66.34
D197 133 : 128 7×19 : 27 play One-hundred-thirty-third harmonic 19
66.67
C/C[a] 21/18 21/18 play Third tone 18, 36, 72
67.90
D13double flat- 26 : 25 2×13 : 52 play Tridecimal third tone, third tone[5] 13 S
70.67
C[2] 25 : 24 52 : 23×3 play Just chromatic semitone or minor chroma,[3] lesser chromatic semitone, small (just) semitone[11] or minor second,[4] minor chromatic semitone,[13] or minor semitone,[5] 27-comma meantone chromatic semitone, augmented unison 5 S
73.68
D23U- 24 : 23 23×3 : 23 play Lesser 23-limit semitone 23 S
75.00
21/16 23/48 play 1 step in 16 equal temperament, 3 steps in 48 16, 48
76.96
C23+ 23 : 22 23 : 2×11 play Greater 23-limit semitone 23 S
78.00
(3 : 2)1/9 31/9 : 21/9 play Alpha scale step 15.39
79.31
67 : 64 67 : 26 play Sixty-seventh harmonic[5] 67
80.54
C7 upside-down- 22 : 21 2×11 : 3×7 play Hard semitone,[5] two-fifth tone small semitone 11 S
84.47
D7 21 : 20 3×7 : 22×5 play Septimal chromatic semitone, minor semitone[3] 7 S
88.80
C19U 20 : 19 22×5 : 19 play Novendecimal augmented unison 19 S
90.22
D−−[2] 256 : 243 28 : 35 play Pythagorean minor second or limma,[3][6][11] Pythagorean diatonic semitone, Low Semitone[14] 3
92.18
C+[2] 135 : 128 33×5 : 27 play Greater chromatic semitone, chromatic semitone, semitone medius, major chroma or major limma,[3] small limma,[11] major chromatic semitone,[13] limma ascendant[5] 5
93.60
D19- 19 : 18 19 : 2×32 Novendecimal minor secondplay 19 S
97.36
D↓↓ 128 : 121 27 : 112 play 121st subharmonic,[5][6] undecimal minor second 11
98.95
D17 upside down 18 : 17 2×32 : 17 play Just minor semitone, Arabic lute index finger[3] 17 S
100.00
C/D 21/12 21/12 play Equal-tempered minor second or semitone 12 M
104.96
C17[2] 17 : 16 17 : 24 play Minor diatonic semitone, just major semitone, overtone semitone,[5] 17th harmonic,[3] limma[citation needed] 17 S
111.45
255 (5 : 1)1/25 play Studie II interval (compound just major third, 5:1, divided into 25 equal parts) 10.77
111.73
D-[2] 16 : 15 24 : 3×5 play Just minor second,[15] just diatonic semitone, large just semitone or major second,[4] major semitone,[5] limma, minor diatonic semitone,[3] diatonic second[16] semitone,[14] diatonic semitone,[11] 16-comma meantone minor second 5 S
113.69
C++ 2187 : 2048 37 : 211 play Apotome[3][11] or Pythagorean major semitone,[6] Pythagorean augmented unison, Pythagorean chromatic semitone, or Pythagorean apotome 3
116.72
(18 : 5)1/19 21/19×32/19 : 51/19 play Secor 10.28
119.44
C7 upside-down 15 : 14 3×5 : 2×7 play Septimal diatonic semitone, major diatonic semitone,[3] Cowell semitone[5] 7 S
125.00
25/48 25/48 play 5 steps in 48 equal temperament 48
128.30
D13 upside down7 14 : 13 2×7 : 13 play Lesser tridecimal 2/3-tone[17] 13 S
130.23
C23+ 69 : 64 3×23 : 26 play Sixty-ninth harmonic[5] 23
133.24
D 27 : 25 33 : 52 play Semitone maximus, minor second, large limma or Bohlen-Pierce small semitone,[3] high semitone,[14] alternate Renaissance half-step,[5] large limma, acute minor second[citation needed] 5
133.33
C/D[a] 21/9 22/18 play Two-third tone 9, 18, 36, 72
138.57
D13- 13 : 12 13 : 22×3 play Greater tridecimal 2/3-tone,[17] Three-quarter tone[5] 13 S
150.00
Cthree quarter sharp/Dhalf flat 23/24 21/8 play Equal-tempered neutral second 8, 24
150.64
D↓[2] 12 : 11 22×3 : 11 play 34 tone or Undecimal neutral second,[3][5] trumpet three-quarter tone,[11] middle finger [between frets][14] 11 S
155.14
D7 35 : 32 5×7 : 25 play Thirty-fifth harmonic[5] 7
160.90
D−− 800 : 729 25×52 : 36 play Grave whole tone,[3] neutral second, grave major second[citation needed] 5
165.00
D[2] 11 : 10 11 : 2×5 play Greater undecimal minor/major/neutral second, 4/5-tone[6] or Ptolemy's second[3] 11 S
171.43
21/7 21/7 play 1 step in 7 equal temperament 7
175.00
27/48 27/48 play 7 steps in 48 equal temperament 48
179.70
71 : 64 71 : 26 play Seventy-first harmonic[5] 71
180.45
Edouble flat−−− 65536 : 59049 216 : 310 play Pythagorean diminished third,[3][6] Pythagorean minor tone 3
182.40
D−[2] 10 : 9 2×5 : 32 play Small just whole tone or major second,[4] minor whole tone,[3][5] lesser whole tone,[16] minor tone,[14] minor second,[11] half-comma meantone major second 5 S
200.00
D 22/12 21/6 play Equal-tempered major second 6, 12 M
203.91
D[2] 9 : 8 32 : 23 play Pythagorean major second, Large just whole tone or major second[11] (sesquioctavan),[4] tonus, major whole tone,[3][5] greater whole tone,[16] major tone[14] 3 S
215.89
D29 145 : 128 5×29 : 27 play Hundred-forty-fifth harmonic 29
223.46
Edouble flat[2] 256 : 225 28 : 32×52 play Just diminished third,[16] 225th subharmonic 5
225.00
23/16 29/48 play 9 steps in 48 equal temperament 16, 48
227.79
73 : 64 73 : 26 play Seventy-third harmonic[5] 73
231.17
D7 upside-down[2] 8 : 7 23 : 7 play Septimal major second,[4] septimal whole tone[3][5] 7 S
240.00
21/5 21/5 play 1 step in 5 equal temperament 5
247.74
D13 upside down 15 : 13 3×5 : 13 play Tridecimal 54 tone[3] 13
250.00
Dhalf sharp/Ethree quarter flat 25/24 25/24 play 5 steps in 24 equal temperament 24
251.34
D37 37 : 32 37 : 25 play Thirty-seventh harmonic[5] 37
253.08
D 125 : 108 53 : 22×33 play Semi-augmented whole tone,[3] semi-augmented second[citation needed] 5
262.37
E↓ 64 : 55 26 : 5×11 play 55th subharmonic[5][6] 11
266.87
E7[2] 7 : 6 7 : 2×3 play Septimal minor third[3][4][11] or Sub minor third[14] 7 S
268.80
D2313 299 : 256 13×23 : 28 play Two-hundred-ninety-ninth harmonic 23
274.58
D[2] 75 : 64 3×52 : 26 play Just augmented second,[16] Augmented tone,[14] augmented second[5][13] 5
275.00
211/48 211/48 play 11 steps in 48 equal temperament 48
289.21
E13 13 : 11 13 : 11 play Tridecimal minor third[3] 13
294.13
E[2] 32 : 27 25 : 33 play Pythagorean minor third[3][5][6][14][16] semiditone, or 27th subharmonic 3
297.51
E19[2] 19 : 16 19 : 24 play 19th harmonic,[3] 19-limit minor third, overtone minor third[5] 19
300.00
D/E 23/12 21/4 play Equal-tempered minor third 4, 12 M
301.85
D7 upside-down- 25 : 21[5] 52 : 3×7 play Quasi-equal-tempered minor third, 2nd 7-limit minor third, Bohlen-Pierce second[3][6] 7
310.26
6:5÷(81:80)1/4 22 : 53/4 play Quarter-comma meantone minor third M
311.98
(3 : 2)4/9 34/9 : 24/9 play Alpha scale minor third 15.39
315.64
E[2] 6 : 5 2×3 : 5 play Just minor third,[3][4][5][11][16] minor third,[14] 13-comma meantone minor third 5 M S
317.60
D++ 19683 : 16384 39 : 214 play Pythagorean augmented second[3][6] 3
320.14
E7 77 : 64 7×11 : 26 play Seventy-seventh harmonic[5] 11
325.00
213/48 213/48 play 13 steps in 48 equal temperament 48
336.13
D177 upside-down- 17 : 14 17 : 2×7 play Superminor third[18] 17
337.15
E+ 243 : 200 35 : 23×52 play Acute minor third[3] 5
342.48
E13 39 : 32 3×13 : 25 play Thirty-ninth harmonic[5] 13
342.86
22/7 22/7 play 2 steps in 7 equal temperament 7
342.91
E7 upside-down- 128 : 105 27 : 3×5×7 play 105th subharmonic,[5] septimal neutral third[6] 7
347.41
E[2] 11 : 9 11 : 32 play Undecimal neutral third[3][5] 11
350.00
Dthree quarter sharp/Ehalf flat 27/24 27/24 play Equal-tempered neutral third 24
354.55
E+ 27 : 22 33 : 2×11 play Zalzal's wosta[6] 12:11 X 9:8[14] 11
359.47
E13 upside down[2] 16 : 13 24 : 13 play Tridecimal neutral third[3] 13
364.54
79 : 64 79 : 26 play Seventy-ninth harmonic[5] 79
364.81
E− 100 : 81 22×52 : 34 play Grave major third[3] 5
375.00
25/16 215/48 play 15 steps in 48 equal temperament 16, 48
384.36
F−− 8192 : 6561 213 : 38 play Pythagorean diminished fourth,[3][6] Pythagorean 'schismatic' third[5] 3
386.31
E[2] 5 : 4 5 : 22 play Just major third,[3][4][5][11][16] major third,[14] quarter-comma meantone major third 5 M S
397.10
E237+ 161 : 128 7×23 : 27 play One-hundred-sixty-first harmonic 23
400.00
E 24/12 21/3 play Equal-tempered major third 3, 12 M
402.47
E1917 323 : 256 17×19 : 28 play Three-hundred-twenty-third harmonic 19
407.82
E+[2] 81 : 64 34 : 26 play Pythagorean major third,[3][5][6][14][16] ditone 3
417.51
F7+[2] 14 : 11 2×7 : 11 play Undecimal diminished fourth or major third[3] 11
425.00
217/48 217/48 play 17 steps in 48 equal temperament 48
427.37
F[2] 32 : 25 25 : 52 play Just diminished fourth,[16] diminished fourth,[5][13] 25th subharmonic 5
429.06
E41 41 : 32 41 : 25 play Forty-first harmonic[5] 41
435.08
E7 upside-down[2] 9 : 7 32 : 7 play Septimal major third,[3][5] Bohlen-Pierce third,[3] Super major Third[14] 7
444.77
F↓ 128 : 99 27 : 32×11 play 99th subharmonic[5][6] 11
450.00
Ehalf sharp/Fhalf flat 29/24 29/24 play 9 steps in 24 equal temperament 8, 24
450.05
83 : 64 83 : 26 play Eighty-third harmonic[5] 83
454.21
F13 13 : 10 13 : 2×5 play Tridecimal major third or diminished fourth 13
456.99
E[2] 125 : 96 53 : 25×3 play Just augmented third, augmented third[5] 5
462.35
E7 upside-down7 upside-down- 64 : 49 26 : 72 play 49th subharmonic[5][6] 7
470.78
F7+[2] 21 : 16 3×7 : 24 play Twenty-first harmonic, narrow fourth,[3] septimal fourth,[5] wide augmented third,[citation needed] H7 on G 7
475.00
219/48 219/48 play 19 steps in 48 equal temperament 48
478.49
E+ 675 : 512 33×52 : 29 play Six-hundred-seventy-fifth harmonic, wide augmented third[3] 5
480.00
22/5 22/5 play 2 steps in 5 equal temperament 5
491.27
E17 85 : 64 5×17 : 26 play Eighty-fifth harmonic[5] 17
498.04
F[2] 4 : 3 22 : 3 play Perfect fourth,[3][5][16] Pythagorean perfect fourth, Just perfect fourth or diatessaron[4] 3 S
500.00
F 25/12 25/12 play Equal-tempered perfect fourth 12 M
501.42
F19+ 171 : 128 32×19 : 27 play One-hundred-seventy-first harmonic 19
510.51
(3 : 2)8/11 38/11 : 28/11 play Beta scale perfect fourth 18.80
511.52
F43 43 : 32 43 : 25 play Forty-third harmonic[5] 43
514.29
23/7 23/7 play 3 steps in 7 equal temperament 7
519.55
F+[2] 27 : 20 33 : 22×5 play 5-limit wolf fourth, acute fourth,[3] imperfect fourth[16] 5
521.51
E+++ 177147 : 131072 311 : 217 play Pythagorean augmented third[3][6] (F+ (pitch)) 3
525.00
27/16 221/48 play 21 steps in 48 equal temperament 16, 48
531.53
F29+ 87 : 64 3×29 : 26 play Eighty-seventh harmonic[5] 29
536.95
F+ 15 : 11 3×5 : 11 play Undecimal augmented fourth[3] 11
550.00
Fhalf sharp/Gthree quarter flat 211/24 211/24 play 11 steps in 24 equal temperament 24
551.32
F[2] 11 : 8 11 : 23 play eleventh harmonic,[5] undecimal tritone,[5] lesser undecimal tritone, undecimal semi-augmented fourth[3] 11
563.38
F13 upside down+ 18 : 13 2×9 : 13 play Tridecimal augmented fourth[3] 13
568.72
F[2] 25 : 18 52 : 2×32 play Just augmented fourth[3][5] 5
570.88
89 : 64 89 : 26 play Eighty-ninth harmonic[5] 89
575.00
223/48 223/48 play 23 steps in 48 equal temperament 48
582.51
G7[2] 7 : 5 7 : 5 play Lesser septimal tritone, septimal tritone[3][4][5] Huygens' tritone or Bohlen-Pierce fourth,[3] septimal fifth,[11] septimal diminished fifth[19] 7
588.27
G−− 1024 : 729 210 : 36 play Pythagorean diminished fifth,[3][6] low Pythagorean tritone[5] 3
590.22
F+[2] 45 : 32 32×5 : 25 play Just augmented fourth, just tritone,[4][11] tritone,[6] diatonic tritone,[3] 'augmented' or 'false' fourth,[16] high 5-limit tritone,[5] 16-comma meantone augmented fourth 5
595.03
G1919 361 : 256 192 : 28 play Three-hundred-sixty-first harmonic 19
600.00
F/G 26/12 21/2=2 play Equal-tempered tritone 2, 12 M
609.35
G137 91 : 64 7×13 : 26 play Ninety-first harmonic[5] 13
609.78
G[2] 64 : 45 26 : 32×5 play Just tritone,[4] 2nd tritone,[6] 'false' fifth,[16] diminished fifth,[13] low 5-limit tritone,[5] 45th subharmonic 5
611.73
F++ 729 : 512 36 : 29 play Pythagorean tritone,[3][6] Pythagorean augmented fourth, high Pythagorean tritone[5] 3
617.49
F7 upside-down[2] 10 : 7 2×5 : 7 play Greater septimal tritone, septimal tritone,[4][5] Euler's tritone[3] 7
625.00
225/48 225/48 play 25 steps in 48 equal temperament 48
628.27
F23+ 23 : 16 23 : 24 play Twenty-third harmonic,[5] classic diminished fifth[citation needed] 23
631.28
G[2] 36 : 25 22×32 : 52 play Just diminished fifth[5] 5
646.99
F31+ 93 : 64 3×31 : 26 play Ninety-third harmonic[5] 31
648.68
G↓[2] 16 : 11 24 : 11 play ` undecimal semi-diminished fifth[3] 11
650.00
Fthree quarter sharp/Ghalf flat 213/24 213/24 play 13 steps in 24 equal temperament 24
665.51
G43U 47 : 32 47 : 25 play Forty-seventh harmonic[5] 47
675.00
29/16 227/48 play 27 steps in 48 equal temperament 16, 48
678.49
Adouble flat−−− 262144 : 177147 218 : 311 play Pythagorean diminished sixth[3][6] 3
680.45
G− 40 : 27 23×5 : 33