Popular science

Title page of Mary Somerville's On the Connexion of the Physical Sciences (1834), an early popular-science book

Popular science (also called pop-science or popsci) is an interpretation of science intended for a general audience. While science journalism focuses on recent scientific developments, popular science is more broad ranging. It may be written by professional science journalists or by scientists themselves. It is presented in many forms, including books, film and television documentaries, magazine articles, and web pages.

History

[edit]

Before the modern specialization and professionalization of science, there was often little distinction between "science" and "popular science", and works intended to share scientific knowledge with a general reader existed as far back as Greek and Roman antiquity.[1] Without these popular works, much of the scientific knowledge of the era might have been lost. For example, none of the original works of the Greek astronomer Eudoxus (4th century BC) have survived, but his contributions were largely preserved due to the didactic poem Phenomena written a century later and commented on by Hipparchus. Explaining science in poetic form was not uncommon, and as recently as 1791, Erasmus Darwin wrote The Botanic Garden, two long poems intended to interest and educate readers in botany. Many Greek and Roman scientific handbooks were written for the lay audience,[2] and this "handbook" tradition continued right through to the invention of the printing press, with much later examples including books of secrets such as Giambattista Della Porta's Magia Naturalis (1558) and Isabella Cortese's Secreti (1561).

The 17th century saw the beginnings of the modern scientific revolution and the consequent need for explicit popular science writing. Although works such as Galileo's The Assayer (1632) and Robert Hooke's Micrographia (1665) were read by both scientists and the public,[3][4] Newton's Principia (1687) was incomprehensible for most readers, so popularizations of Newton's ideas soon followed.[5] Popular science writing surged in countries such as France, where books such as Fontenelle's Conversations on the Plurality of Worlds (1686) were best-sellers.[6]

By 1830, astronomer John Herschel had recognized the need for the specific genre of popular science. In a letter to philosopher William Whewell, he wrote that the general public needed "digests of what is actually known in each particular branch of science... to give a connected view of what has been done, and what remains to be accomplished."[7] Indeed, as the British population became not just increasingly literate but also well-educated, there was growing demand for science titles.[8] Mary Somerville became an early and highly successful science writer of the nineteenth century. Her On the Connexion of the Physical Sciences (1834), intended for the mass audience, sold quite well.[9][10] Arguably one of the first books in modern popular science, it contained few diagrams and very little mathematics. Ten editions of the book were published, and it was translated into multiple languages. It was the most popular science title from the publisher John Murray until On the Origin of Species (1859) by Charles Darwin.[7]

Role

[edit]

Popular science is a bridge between scientific literature as a professional medium of scientific research, and the realms of popular political and cultural discourse. The goal of the genre is often to capture the methods and accuracy of science while making the language more accessible. Many science-related controversies are discussed in popular science books and publications, such as the long-running debates over biological determinism and the biological components of intelligence, stirred by popular books such as The Mismeasure of Man and The Bell Curve.[11]

The purpose of scientific literature is to inform and persuade peers regarding the validity of observations and conclusions and the forensic efficacy of methods. Popular science attempts to inform and convince scientific outsiders (sometimes along with scientists in other fields) of the significance of data and conclusions and to celebrate the results. Statements in the scientific literature are often qualified and tentative, emphasizing that new observations and results are consistent with and similar to established knowledge wherein qualified scientists are assumed to recognize the relevance. By contrast, popular science emphasizes uniqueness and generality, taking a tone of factual authority absent from the scientific literature.

Common threads

[edit]

Some usual features of popular science productions include:

  • Entertainment value or personal relevance to the audience
  • Emphasis on uniqueness and radicalness
  • Exploring ideas overlooked by specialists or falling outside established disciplines
  • Generalized, simplified science concepts
  • Presented for an audience with little or no science background, hence explaining general concepts more thoroughly
  • Synthesis of new ideas that cross multiple fields and offer new applications in other academic specialties
  • Use of metaphors and analogies to explain difficult or abstract scientific concepts

Criticism

[edit]

The purpose of scientific literature is to inform and persuade peers regarding the validity of observations and conclusions and the forensic efficacy of methods. Popular science attempts to inform and convince scientific outsiders (sometimes along with scientists in other fields) of the significance of data and conclusions and to celebrate the results. Statements in the scientific literature are often qualified and tentative, emphasizing that new observations and results are consistent with and similar to established knowledge wherein qualified scientists are assumed to recognize the relevance. By contrast, popular science often emphasizes uniqueness and generality and may have a tone of factual authority absent from the scientific literature. Comparisons between original scientific reports, derivative science journalism, and popular science typically reveals at least some level of distortion and oversimplification.[12]

See also

[edit]

Notes and references

[edit]
  1. ^ Muñoz Morcillo, Jesús; Robertson-von Trotha, Caroline Y. (2020). Muñoz Morcillo, Jesús; Robertson-von Trotha, Caroline Y. (eds.). Genealogy of Popular Science: From Ancient Ecphrasis to Virtual Reality. Verlag. doi:10.1515/9783839448359. ISBN 9783839448359.
  2. ^ Stahl, William Harris (1962). Roman science: origins, development, and influence to the later Middle Ages. Madison: University of Wisconsin Press.
  3. ^ Pellegrini, Giuseppe; Rubin, Andrea (2020). "20 Italy: The long and winding path of science communication". In Gascoigne, Toss; Schiele, Bernard; Leach, Joan; Riedlinger, Michelle; Lewenstein, Bruce V.; Massarani, Luisa; Broks, Peter (eds.). Communicating Science: A Global Perspective. Australian National University Press. p. 469. doi:10.22459/CS.2020. ISBN 9781760463656. S2CID 230769184.
  4. ^ Falkowski, Paul G. (2015). "2 Meet the Microbes. Life's Engines: How Microbes Made Earth Habitable". Life's Engines. Princeton University Press. pp. 25–27. doi:10.1515/9781400865727-004.
  5. ^ Meadows, Jack (1986). "The growth of science popularization: a historical sketch". Impact. 144: 341–346.
  6. ^ Boissoneault, Lorraine (13 February 2019). "How 18th-Century Writers Created the Genre of Popular Science". Smithsonian Magazine.
  7. ^ a b Holmes, Richard (22 October 2014). "In retrospect: On the Connexion of the Physical Sciences". Nature. 514 (7523): 432–433. Bibcode:2014Natur.514..432H. doi:10.1038/514432a. S2CID 4453696.
  8. ^ Yeo, Richard R. (1993). Defining science : William Whewell, natural knowledge, and public debate in early Victorian Britain. Cambridge: Cambridge University Press. pp. 43–44. ISBN 0-521-43182-4. OCLC 26673878.
  9. ^ Baraniuk, Chris (28 June 2017). "Mary Somerville: Queen of 19th-century science". New Scientist. 235 (3132): 40–1. doi:10.1016/S0262-4079(17)31271-X.
  10. ^ Strickland, Elisabetta (September 2017). "Mary Fairfax Somerville, Queen of Science". Notices of the American Mathematical Society. 64 (8): 929–31. doi:10.1090/noti1569.
  11. ^ Murdz William McRae, "Introduction: Science in Culture" in The Literature of Science, pp. 1–3, 10–11
  12. ^ Fahnestock, Jeanne. "Accommodating Science: The Rhetorical Life of Scientific Facts". Written Communication. 3 (3): 275–296. doi:10.1177/0741088386003003001. S2CID 146786632.

General bibliography

[edit]
  • Andreas W. Daum, Varieties of Popular Science and the Transformations of Public Knowledge: Some Historical Reflections". Isis. A Journal of the History of Science Society, 100 (June 2009), 319–332.
  • McRae, Murdo William (editor). The Literature of Science: Perspectives on Popular Scientific Writing. The University of Georgia Press: Athens, 1993. ISBN 0-8203-1506-0.
[edit]