Isotopes of thallium

Isotopes of thallium (81Tl)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
201Tl synth 3.0421 d ε 201Hg
203Tl 29.5% stable
204Tl synth 3.78 y β 204Pb
ε 204Hg
205Tl 70.5% stable
Standard atomic weight Ar°(Tl)

Thallium (81Tl) has 41 isotopes with atomic masses that range from 176 to 216. 203Tl and 205Tl are the only stable isotopes and 204Tl is the most stable radioisotope with a half-life of 3.78 years. 207Tl, with a half-life of 4.77 minutes, has the longest half-life of naturally occurring Tl radioisotopes. All isotopes of thallium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Thallium-202 (half-life 12.23 days) can be made in a cyclotron[4] while thallium-204 (half-life 3.78 years) is made by the neutron activation of stable thallium in a nuclear reactor.[5]

In the fully ionized state, the isotope 205Tl81+ becomes beta-radioactive, undergoing bound-state β decay to 205Pb81+ with a half-life of 291+33
−27
days,[6][7] but 203Tl remains stable.

205Tl is the decay product of bismuth-209, an isotope that was once thought to be stable but is now known to undergo alpha decay with an extremely long half-life of 2.01×1019 y.[8] 205Tl is at the end of the neptunium series decay chain.

The neptunium series decay chain, which ends at 205Tl.

List of isotopes

[edit]


Nuclide[9]
[n 1]
Historic
name
Z N Isotopic mass (Da)[10]
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion Range of variation
176Tl[11] 81 95 176.00059(21)# 2.4+1.6
−0.7
 ms
p (~63%) 175Hg (3−, 4−, 5−)
α (~37%) 172Au
176mTl ~671 keV 290+200
−80
 μs
p (~50%) 175Hg
α (~50%) 172mAu
177Tl[12] 81 96 176.996427(27) 18(5) ms α (73%) 173Au (1/2+)
p (27%) 176Hg
177mTl 807(18) keV 230(40) μs p (51%) 176Hg (11/2−)
α (49%) 173Au
178Tl[13] 81 97 177.99490(12)# 255(9) ms α (62%) 174Au (4-,5-)
β+ (38%) 178Hg
β+, SF (0.15%) (various)
179Tl[14] 81 98 178.99109(5) 437(9) ms α (60%) 175Au (1/2+)
β+ (40%) 179Hg
179m1Tl 825(10)# keV 1.41(2) ms α 175Au (11/2−)
IT (rare) 179Tl
β+ (rare) 179Hg
179m2Tl 904.5(9) keV 119(14) ns IT 179Tl (9/2−)
180Tl[15] 81 99 179.98991(13)# 1.09(1) s β+ (93%) 180Hg 4-#
α (7%) 176Au
β+, SF (0.0032%) 100Ru, 80Kr[16]
181Tl[17] 81 100 180.986257(10) 2.9(1) s β+ (91.4%) 181Hg 1/2+#
α (8.6%) 177Au
181mTl 834.9(4) keV 1.40(3) ms IT (99.60%) 181Tl (9/2−)
α (0.40%) 177Au
182Tl 81 101 181.98567(8) 2.0(3) s β+ (96%) 182Hg 2−#
α (4%) 178Au
182m1Tl 100(100)# keV 2.9(5) s α 178Au (7+)
β+ (rare) 182Hg
182m2Tl 600(140)# keV 10−
183Tl 81 102 182.982193(10) 6.9(7) s β+ (98%) 183Hg 1/2+#
α (2%) 179Au
183m1Tl 630(17) keV 53.3(3) ms IT (99.99%) 183Tl 9/2−#
α (.01%) 179Au
183m2Tl 976.8(3) keV 1.48(10) μs (13/2+)
184Tl 81 103 183.98187(5) 9.7(6) s β+ 184Hg 2−#
184m1Tl 100(100)# keV 10# s β+ (97.9%) 184Hg 7+#
α (2.1%) 180Au
184m2Tl 500(140)# keV 47.1 ms IT (99.911%) (10−)
α (.089%) 180Au
185Tl 81 104 184.97879(6) 19.5(5) s α 181Au 1/2+#
β+ 185Hg
185mTl 452.8(20) keV 1.93(8) s IT (99.99%) 185Tl 9/2−#
α (.01%) 181Au
β+ 185Hg
186Tl 81 105 185.97833(20) 40# s β+ 186Hg (2−)
α (.006%) 182Au
186m1Tl 320(180) keV 27.5(10) s β+ 186Hg (7+)
186m2Tl 690(180) keV 2.9(2) s (10−)
187Tl 81 106 186.975906(9) ~51 s β+ 187Hg (1/2+)
α (rare) 183Au
187mTl 335(3) keV 15.60(12) s α 183Au (9/2−)
IT 187Tl
β+ 187Hg
188Tl 81 107 187.97601(4) 71(2) s β+ 188Hg (2−)
188m1Tl 40(30) keV 71(1) s β+ 188Hg (7+)
188m2Tl 310(30) keV 41(4) ms (9−)
189Tl 81 108 188.973588(12) 2.3(2) min β+ 189Hg (1/2+)
189mTl 257.6(13) keV 1.4(1) min β+ (96%) 189Hg (9/2−)
IT (4%) 189Tl
190Tl 81 109 189.97388(5) 2.6(3) min β+ 190Hg 2(−)
190m1Tl 130(90)# keV 3.7(3) min β+ 190Hg 7(+#)
190m2Tl 290(70)# keV 750(40) μs (8−)
190m3Tl 410(70)# keV >1 μs 9−
191Tl 81 110 190.971786(8) 20# min β+ 191Hg (1/2+)
191mTl 297(7) keV 5.22(16) min β+ 191Hg 9/2(−)
192Tl 81 111 191.97223(3) 9.6(4) min β+ 192Hg (2−)
192m1Tl 160(50) keV 10.8(2) min β+ 192Hg (7+)
192m2Tl 407(54) keV 296(5) ns (8−)
193Tl 81 112 192.97067(12) 21.6(8) min β+ 193Hg 1/2(+#)
193mTl 369(4) keV 2.11(15) min IT (75%) 193Tl 9/2−
β+ (25%) 193Hg
194Tl 81 113 193.97120(15) 33.0(5) min β+ 194Hg 2−
α (10−7%) 190Au
194mTl 300(200)# keV 32.8(2) min β+ 194Hg (7+)
195Tl 81 114 194.969774(15) 1.16(5) h β+ 195Hg 1/2+
195mTl 482.63(17) keV 3.6(4) s IT 195Tl 9/2−
196Tl 81 115 195.970481(13) 1.84(3) h β+ 196Hg 2−
196mTl 394.2(5) keV 1.41(2) h β+ (95.5%) 196Hg (7+)
IT (4.5%) 196Tl
197Tl 81 116 196.969575(18) 2.84(4) h β+ 197Hg 1/2+
197mTl 608.22(8) keV 540(10) ms IT 197Tl 9/2−
198Tl 81 117 197.97048(9) 5.3(5) h β+ 198Hg 2−
198m1Tl 543.5(4) keV 1.87(3) h β+ (54%) 198Hg 7+
IT (46%) 198Tl
198m2Tl 687.2(5) keV 150(40) ns (5+)
198m3Tl 742.3(4) keV 32.1(10) ms (10−)#
199Tl 81 118 198.96988(3) 7.42(8) h β+ 199Hg 1/2+
199mTl 749.7(3) keV 28.4(2) ms IT 199Tl 9/2−
200Tl 81 119 199.970963(6) 26.1(1) h β+ 200Hg 2−
200m1Tl 753.6(2) keV 34.3(10) ms IT 200Tl 7+
200m2Tl 762.0(2) keV 0.33(5) μs 5+
201Tl[n 8] 81 120 200.970819(16) 72.912(17) h EC 201Hg 1/2+
201mTl 919.50(9) keV 2.035(7) ms IT 201Tl (9/2−)
202Tl 81 121 201.972106(16) 12.23(2) d β+ 202Hg 2−
202mTl 950.19(10) keV 572(7) μs 7+
203Tl 81 122 202.9723442(14) Observationally Stable[n 9] 1/2+ 0.2952(1) 0.29494–0.29528
203mTl 3400(300) keV 7.7(5) μs (25/2+)
204Tl 81 123 203.9738635(13) 3.78(2) y β (97.1%) 204Pb 2−
EC (2.9%) 204Hg
204m1Tl 1104.0(4) keV 63(2) μs (7)+
204m2Tl 2500(500) keV 2.6(2) μs (12−)
204m3Tl 3500(500) keV 1.6(2) μs (20+)
205Tl[n 10] 81 124 204.9744275(14) Observationally Stable[n 11][n 12] 1/2+ 0.7048(1) 0.70472–0.70506
205m1Tl 3290.63(17) keV 2.6(2) μs 25/2+
205m2Tl 4835.6(15) keV 235(10) ns (35/2–)
206Tl Radium E 81 125 205.9761103(15) 4.200(17) min β 206Pb 0− Trace[n 13]
206mTl 2643.11(19) keV 3.74(3) min IT 206Tl (12–)
207Tl Actinium C 81 126 206.977419(6) 4.77(2) min β 207Pb 1/2+ Trace[n 14]
207mTl 1348.1(3) keV 1.33(11) s IT (99.9%) 207Tl 11/2–
β (.1%) 207Pb
208Tl Thorium C" 81 127 207.9820187(21) 3.053(4) min β 208Pb 5+ Trace[n 15]
209Tl 81 128 208.985359(8) 2.161(7) min β 209Pb 1/2+ Trace[n 16]
210Tl Radium C″ 81 129 209.990074(12) 1.30(3) min β (99.991%) 210Pb (5+)# Trace[n 13]
β, n (.009%) 209Pb
211Tl 81 130 210.993480(50) 80(16) s β (97.8%) 211Pb 1/2+
β, n (2.2%) 210Pb
212Tl 81 131 211.998340(220)# 31(8) s β (98.2%) 212Pb (5+)
β, n (1.8%) 211Pb
213Tl 81 132 213.001915(29) 24(4) s β (92.4%) 213Pb 1/2+
β, n (7.6%) 212Pb
214Tl 81 133 214.006940(210)# 11(2) s β (66%) 214Pb 5+#
β, n (34%) 213Pb
215Tl 81 134 215.010640(320)# 10(4) s β (95.4%) 215Pb 1/2+#
β, n (4.6%) 214Pb
216Tl 81 135 216.015800(320)# 6(3) s β 216Pb 5+#
β, n (<11.5%) 215Pb
This table header & footer:
  1. ^ mTl – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Main isotope used in scintigraphy
  9. ^ Believed to undergo α decay to 199Au
  10. ^ Final decay product of 4n+1 decay chain (the Neptunium series)
  11. ^ Believed to undergo α decay to 201Au
  12. ^ Can undergo bound-state β decay to 205Pb81+ with a half-life of 291+33
    −27
    days when fully ionized[7]
  13. ^ a b Intermediate decay product of 238U
  14. ^ Intermediate decay product of 235U
  15. ^ Intermediate decay product of 232Th
  16. ^ Intermediate decay product of 237Np

Thallium-201

[edit]

Thallium-201 (201Tl) is a synthetic radioisotope of thallium. It has a half-life of 73 hours and decays by electron capture, emitting X-rays (~70–80 keV), and photons of 135 and 167 keV in 10% total abundance.[18] Thallium-201 is synthesized by the neutron activation of stable thallium in a nuclear reactor,[18][19] or by the 203Tl(p, 3n)201Pb nuclear reaction in cyclotrons, as 201Pb naturally decays to 201Tl afterwards.[20] It is a radiopharmaceutical, as it has good imaging characteristics without excessive patient radiation dose. It is the most popular isotope used for thallium nuclear cardiac stress tests.[21]

References

[edit]
  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Thallium". CIAAW. 2009.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ "Thallium Research". doe.gov. Department of Energy. Archived from the original on 2006-12-09. Retrieved 23 March 2018.
  5. ^ Manual for reactor produced radioisotopes from the International Atomic Energy Agency
  6. ^ "Bound-state beta decay of highly ionized atoms" (PDF). Archived from the original (PDF) on October 29, 2013. Retrieved June 9, 2013.
  7. ^ a b Bai, M.; Blaum, K.; Boev, B.; Bosch, F.; Brandau, C.; Cvetković, V.; Dickel, T.; Dillmann, I.; Dmytriiev, D.; Faestermann, T.; Forstner, O.; Franczak, B.; Geissel, H.; Gernhäuser, R.; Glorius, J.; Griffin, C. J.; Gumberidze, A.; Haettner, E.; Hillenbrand, P.-M.; Kienle, P.; Korten, W.; Kozhuharov, Ch.; Kuzminchuk, N.; Langanke, K.; Litvinov, S.; Menz, E.; Morgenroth, T.; Nociforo, C.; Nolden, F.; Pavićević, M. K.; Petridis, N.; Popp, U.; Purushothaman, S.; Reifarth, R.; Sanjari, M. S.; Scheidenberger, C.; Spillmann, U.; Steck, M.; Stöhlker, Th.; Tanaka, Y. K.; Trassinelli, M.; Trotsenko, S.; Varga, L.; Wang, M.; Weick, H.; Woods, P. J.; Yamaguchi, T.; Zhang, Y. H.; Zhao, J.; Zuber, K.; et al. (E121 Collaboration and LOREX Collaboration) (2 December 2024). "Bound-State Beta Decay of 205Tl81+ Ions and the LOREX Project". Physical Review Letters. 133 (23). American Physical Society: 232701. doi:10.1103/PhysRevLett.133.232701.
  8. ^ Marcillac, P.; Coron, N.; Dambier, G.; et al. (2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature. 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID 12712201. S2CID 4415582.
  9. ^ Half-life, decay mode, nuclear spin, and isotopic composition is sourced in:
    Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  10. ^ Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
  11. ^ Al-Aqeel, Muneerah Abdullah M. "Decay Spectroscopy of the Thallium Isotopes 176,177Tl". University of Liverpool. ProQuest 2447566201. Retrieved 21 June 2023.
  12. ^ Poli, G. L.; Davids, C. N.; Woods, P. J.; Seweryniak, D.; Batchelder, J. C.; Brown, L. T.; Bingham, C. R.; Carpenter, M. P.; Conticchio, L. F.; Davinson, T.; DeBoer, J.; Hamada, S.; Henderson, D. J.; Irvine, R. J.; Janssens, R. V. F.; Maier, H. J.; Müller, L.; Soramel, F.; Toth, K. S.; Walters, W. B.; Wauters, J. (1 June 1999). "Proton and $\ensuremath{\alpha}$ radioactivity below the $Z=82$ shell closure". Physical Review C. 59 (6): R2979–R2983. doi:10.1103/PhysRevC.59.R2979. Retrieved 21 June 2023.
  13. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  14. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  15. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  16. ^ Reich, E. S. (2010). "Mercury serves up a nuclear surprise: a new type of fission". Scientific American. Retrieved 12 May 2011.
  17. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  18. ^ a b Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  19. ^ "Manual for reactor produced radioisotopes" (PDF). International Atomic Energy Agency. 2003. Archived (PDF) from the original on 2011-05-21. Retrieved 2010-05-13.
  20. ^ Cyclotron Produced Radionuclides: Principles and Practice (PDF). International Atomic Energy Agency. 2008. ISBN 9789201002082. Retrieved 2022-07-01.
  21. ^ Maddahi, Jamshid; Berman, Daniel (2001). "Detection, Evaluation, and Risk Stratification of Coronary Artery Disease by Thallium-201 Myocardial Perfusion Scintigraphy 155". Cardiac SPECT imaging (2nd ed.). Lippincott Williams & Wilkins. pp. 155–178. ISBN 978-0-7817-2007-6. Archived from the original on 2017-02-22. Retrieved 2016-09-26.