Timeline of crystallography
This is a timeline of crystallography.
17th century
[edit]- 1669 - In his book De solido intra solidum naturaliter contento[1] Nicolas Steno asserted that, although the number and size of crystal faces may vary from one crystal to another, the angles between corresponding faces are always the same. This was the original statement of the first law of crystallography (Steno's law).[2]
18th century
[edit]- 1723 - Moritz Anton Cappeller introduced the term crystallography in his book Prodromus Crystallographiae De Crystallis Improprie Sic Dictis Commentarium.[3]
- 1766 - Pierre-Joseph Macquer, in his Dictionnaire de Chymie, promoted mechanisms of crystallization based on the idea that crystals are composed of polyhedral molecules (primitive integrantes).[4]
- 1772 - Jean-Baptiste L. Romé de l'Isle developed geometrical ideas on crystal structure in his Essai de Cristallographie. He also described the twinning phenomenon in crystals.[5]
- 1781 - Abbé René Just Haüy (often termed the "Father of Modern Crystallography"[6]) discovered that crystals always cleave along crystallographic planes. Based on this observation, and the fact that the inter-facial angles in each crystal species always have the same value, Haüy concluded that crystals must be periodic and composed of regularly arranged rows of tiny polyhedra (molécules intégrantes). This theory explained why all crystal planes are related by small rational numbers (the law of rational indices).[7][8]
- 1783 - Jean-Baptiste L. Romé de l'Isle in the second edition of his Cristallographie used the contact goniometer to discover the law of constant interfacial angles: angles are constant and characteristic for crystals of the same chemical substance.[9]
- 1784 - René Just Haüy published his law of decrements: a crystal is composed of molecules arranged periodically in three dimensions.[10]
- 1795 - René Just Haüy lectured on his law of symmetry: "the manner in which Nature creates crystals is always obeying ... the law of the greatest possible symmetry, in the sense that oppositely situated but corresponding parts are always equal in number, arrangement, and form of their faces".[11]
19th century
[edit]- 1801 - René Just Haüy published his multi-volume Traité de Minéralogie in Paris. A second edition under the title Traité de Cristallographie was published in 1822.[12][13]
- 1801 - Déodat de Dolomieu published his Sur la philosophie minéralogique et sur l'espèce minéralogique in Paris.[14]
- 1815 - René Just Haüy published his law of symmetry.[15]
- 1815 - Christian Samuel Weiss, founder of the dynamist school of crystallography, developed a geometric treatment of crystals in which crystallographic axes are the basis for classification of crystals rather than Haüy's polyhedral molecules.[16]
- 1819 - Eilhard Mitscherlich discovered crystallographic isomorphism.[17]
- 1822 - Friedrich Mohs attempted to bring the molecular approach of Haüy and the geometric approach of Weiss into agreement.[18]
- 1823 - Franz Ernst Neumann invented a system of crystal face notation, by using the reciprocals of the intercepts with crystal axes, which becomes the standard for the next 60 years.[19]
- 1824 - Ludwig August Seeber conceived of the concept of using an array of discrete (molecular) points to represent a crystal.[20]
- 1826 - Moritz Ludwig Frankenheim derived the 32 crystal classes by using the crystallographic restriction, consistent with Haüy's laws, that only 2, 3, 4 and 6-fold rotational axes are permitted.[21]
- 1830 - Johann F. C. Hessel published an independent geometrical derivation of the 32 point groups (crystal classes).[22]
- 1832 - Friedrich Wöhler and Justus von Liebig discovered polymorphism in molecular crystals, using the example of benzamide.[23]
- 1839 - William Hallowes Miller invented zonal relations by projecting the faces of a crystal upon the surface of a circumscribed sphere. Miller indices are defined which form a notation system in crystallography for planes in crystal (Bravais) lattices.[24]
- 1840 - Gabriel Delafosse, independently of Seeber, represented crystal structure as an array of discrete points generated by defined translations.[25]
- 1842 - Moritz Frankenheim derived 15 different theoretical networks of points in space not dependent on molecular shape.[26]
- 1848 - Louis Pasteur discovered that sodium ammonium tartrate can crystallize in left- and right-handed forms and showed that the two forms can rotate polarized light in opposite directions. This was the first demonstration of molecular chirality, and also the first explanation of isomerism.[27][28]
- 1850 - Auguste Bravais derived the 14 space lattices.[29][30]
- 1869 - Axel Gadolin, independently of Hessel, derived the 32 crystal classes using stereographic projection.[31]
- 1877 - Paul Heinrich von Groth founded the journal Zeitschrift für Krystallographie und Mineralogie, and served as its editor for 44 years.[32]
- 1877 - Ernest-François Mallard, building on the work of Auguste Bravais, published a memoir[33] on optically "anomalous" crystals (that is, those crystals the morphology of which seems to be of greater symmetry than their optics), in which the importance of crystal twinning and "pseudosymmetry"[34] were used as explanatory concepts.
- 1879 - Leonhard Sohncke listed the 65 crystallographic point systems using rotations and reflections in addition to translations.[35]
- 1888 - Friedrich Reinitzer discovered the existence of liquid crystals during investigations of cholesteryl benzoate.[36]
- 1889 - Otto Lehmann, after receiving a letter from Friedrich Reinitzer, used polarizing light to explain the phenomenon of liquid crystals.[37]
- 1891 - Derivation of the 230 space groups (by adding mirror-image symmetry to Sohncke's work) by a collaborative effort of Evgraf Fedorov and Arthur Schoenflies.[38][39]
- 1894 - William Barlow, using a sphere packing approach, independently derived the 230 space groups.[40]
- 1894 - Pierre Curie described the now called Curie's principle for the symmetry properties of crystals. [41][42]
- 1895 - Wilhelm Conrad Röntgen on 8 November 1895 produced and detected electromagnetic radiation in a wavelength range now known as X-rays or Röntgen rays, an achievement that earned him the first Nobel Prize in Physics in 1901. X-rays became the major mode of crystallographic research in the 20th century.[43]
- 1899 - Hermanus Haga and Cornelis Wind observed X-ray diffuse broadening through a slit and deduced that the wavelength of X-rays is on the order of an angstrom.[44]
20th century
[edit]- 1905 - Charles Glover Barkla discovered the X-ray polarization effect.[45]
- 1908 - Bernhard Walter and Robert Wichard Pohl observed X-ray diffraction from a slit.[46][47]
- 1912 - Max von Laue discovered diffraction patterns from crystals in an x-ray beam.[48]
- 1912 - Bragg diffraction, expressed through Bragg's law, is first presented by Lawrence Bragg on 11 November 1912 to the Cambridge Philosophical Society.[49]
- 1912 - Heinrich Baumhauer discovered and described polytypism in crystals of carborundum, or silicon carbide.[50]
- 1913 - Lawrence Bragg published the first observation of x-ray diffraction by crystals.[51] Similar observations were also published by Torahiko Terada in the same year.[52][53][54]
- 1913 - Georges Friedel stated Friedel's law, a property of Fourier transforms of real functions. Friedel's law is used in X-ray diffraction, crystallography and scattering from real potential within the Born approximation.[55]
- 1914 - Max von Laue won the Nobel Prize in Physics "for his discovery of the diffraction of X-rays by crystals."[56]
- 1915 - William and Lawrence Bragg published the book X rays and crystal structure[57] and shared the Nobel Prize in Physics "for their services in the analysis of crystal structure by means of X-rays."[58]
- 1916 - Peter Debye and Paul Scherrer discovered powder (polycrystalline) diffraction.[59]
- 1916 - Paul Peter Ewald predicted the Pendellösung effect, which is a foundational aspect of the dynamical diffraction theory of X rays.[60]
- 1917 - Albert W. Hull independently discovered powder diffraction in researching the crystal structure of metals.[61][62]
- 1920 - Reginald Oliver Herzog and Willi Jancke published the first systematic analysis of X-ray diffraction patterns of cellulose extracted from a variety of sources.[63]
- 1921 - Paul Peter Ewald introduced a spherical construction for explaining the occurrence of diffraction spots, which is now called Ewald's sphere.[64]
- 1922 - Charles Galton Darwin formulated the theory of X-ray diffraction from imperfect crystals and introduced the concept of mosaicity in crystallography.[65][66]
- 1922 - Ralph Wyckoff published a book[67] containing tables with the positional coordinates permitted by the symmetry elements. These positions are now known as Wyckoff positions. This book was the forerunner of the International tables for crystallography, which first appeared in 1935.
- 1923 - Roscoe Dickinson and Albert Raymond, and independently, H.J. Gonell and Hermann Mark, first showed that an organic molecule, specifically hexamethylenetetramine, could be characterized by x-ray crystallography.[68][69]
- 1923 - William H. Bragg and Reginald E. Gibbs elucidated the structure of quartz.[70][71]
- 1923 - Paul Peter Ewald published his book Kristalle und Röntgenstrahlen (Crystals and X-rays).[72]
- 1924 - Louis de Broglie in his PhD thesis Recherches sur la théorie des quanta[73] introduced his theory of electron waves. This was the start of electron and neutron diffraction and crystallography.
- 1924 - J.D. Bernal established the structure of graphite.[74]
- 1926 - Victor Goldschmidt distinguished between atomic and ionic radii and postulated some rules for atom substitution in crystal structures.[75]
- 1927 - Frits Zernike and Jan Albert Prins proposed the pair distribution function for analyzing molecular structures in solution-phase diffraction.[76]
- 1927 - Two groups demonstrated electron diffraction, the first the Davisson–Germer experiment,[77][78][79][80] the other by George Paget Thomson and Alexander Reid.[81] Alexander Reid, who was Thomson's graduate student, performed the first experiments,[82] but he died soon after in a motorcycle accident.[83]
- 1928 - Felix Machatschki, working with Goldschmidt, showed that silicon can be replaced by aluminium in feldspar structures.[84]
- 1928 - Kathleen Lonsdale used x-rays to determine that the structure of benzene is a flat hexagonal ring.[85]
- 1928 - Paul Niggli introduced reduced cells for simplifying structures using a technique now known as Niggli reduction.[86]
- 1928 - Hans Bethe published the first non-relativistic explanation of electron diffraction based upon Schrödinger's equation, which remains central to all further analysis.[87]
- 1928 - Carl Hermann introduced[88] and Charles Mauguin modified[89] the international standard notation for crystallographic groups called Hermann–Mauguin notation.
- 1929 - Linus Pauling formulated a set of rules (later called Pauling's rules) to describe the structure of complex ionic crystals.[90]
- 1929 - William Howard Barnes published the crystal structure of ice.[91]
- 1930 - Lawrence Bragg assembled the first classification of silicates, describing their structure in terms of grouping of SiO4 tetrahedra.[92]
- 1930 - Gas electron diffraction was developed by Herman Mark and Raymond Wierl,[93][94]
- 1931 - Paul Ewald and Carl Hermann published the first volume of the Strukturbericht (Structure Report),[95] which established the systematic classification of crystal structure prototypes, also known as the Strukturbericht designation.
- 1931 - Fritz Laves enumerated the Laves tilings for the first time.[96]
- 1932 - W. H. Zachariasen published an article entitled The atomic arrangement in glass,[97] which perhaps had more influence than any other published work on the science of glass.
- 1932 - Friedrich Rinne introduced the concept of paracrystallinity for liquid crystals and amorphous materials.[98][99]
- 1932 - Vadim E. Lashkaryov and Ilya D. Usyskin determined of the positions of hydrogen atoms in ammonium chloride crystals using electron diffraction.[100]
- 1934 - Arthur Patterson introduced the Patterson function which uses diffraction intensities to determine the interatomic distances within a crystal, setting limits to the possible phase values for the reflected x-rays.[101]
- 1934 - Martin Julian Buerger developed the equi-inclination Weissenberg X-ray camera. Buerger invented the precession camera in 1942.[102]
- 1934 - C. Arnold Beevers and Henry Lipson invented the Beevers–Lipson strip as a calculation aid for Fourier methods for the determination of the crystal structure of CuSO4.5H2O.[103][104]
- 1934 - Fritz Laves investigated the structures of intermetallic compounds of formula AB2.[105][106] These structures were subsequently named Laves phases.[107][108]
- 1935 - First publication of the International tables for the determination of crystal structures edited by Carl Hermann.[109] The successor volumes are currently published by IUCr as the International tables for crystallography.[110]
- 1935 - William Astbury established the structure of keratin using x-ray crystallography;[111][112] this work provided the foundation for Linus Pauling's 1951 discovery of the α-helix.
- 1936 - Peter Debye won the Nobel Prize in Chemistry "for his contributions to our knowledge of molecular structure through his investigations on dipole moments and on the diffraction of X-rays and electrons in gases."[113]
- 1936 - Hans Boersch showed that electron microscope could be used as micro-diffraction cameras with an aperture[114]—the birth of selected area electron diffraction.[115]: Chpt 5-6
- 1937 - Clinton Joseph Davisson and George Paget Thomson shared the Nobel Prize in physics "for their experimental discovery of the diffraction of electrons by crystals."[116]
- 1939 - Linus Pauling published the book The Nature of the Chemical Bond and the Structure of Molecules and Crystals.[117]
- 1939 - André Guinier discovered small-angle X-ray scattering.[118]
- 1939 - Walther Kossel and Gottfried Möllenstedt published the first work on convergent beam electron diffraction (CBED),[119] It was extended by Peter Goodman and Gunter Lehmpfuhl,[120] then mainly by the groups of John Steeds[121][122][123] and Michiyoshi Tanaka[124][125] who showed how to use CBED patterns to determine point groups and space groups.
- 1941 - The International Centre for Diffraction Data was founded.[126]
- 1945 - George W. Brindley and Keith Robinson solved the crystal structure of kaolinite.[127]
- 1945 - The crystal structure of the perovskite BaTiO3 was first published by Helen Megaw based on barium titanate X-ray diffraction data.[128]
- 1945 - A.F. Wells published the classic reference book, Structural inorganic chemistry,[129] which subsequently went through five editions.
- 1946 - Foundation of the International Union of Crystallography.[130]
- 1946 - James Batcheller Sumner shared the Nobel Prize in Chemistry "for his discovery that enzymes can be crystallized".[131]
- 1947 - Lewis Stephen Ramsdell systematically classified the polytypes of silicon carbide, and introduced the Ramsdell notation.[132]
- 1948 - The first congress and general assembly of the International Union of Crystallography was held at Harvard University.[133]
- 1948 - Acta Crystallographica was founded by the International Union of Crystallography (IUCr) with P.P. Ewald as its first editor.[134]
- 1948 - Ernest O. Wollan and Clifford Shull published the first series of neutron diffraction experiments for crystallography performed at the Oak Ridge National Laboratory.[135]
- 1948 - George Pake used solid state NMR spectroscopy to determine hydrogen atom distances in a single crystal of gypsum.[136]
- 1949 - Clifford Shull opened a new field of magnetic crystallography based on neutron diffraction.[137]
- 1950 - Jerome Karle and Herbert A. Hauptman introduced formulae for phase determination known as direct methods.[138]
- 1951 - Johannes Martin Bijvoet and his colleagues, using anomalous scattering, confirmed Emil Fischer's arbitrary assignment of absolute configuration, in relation to the direction of optical rotation of polarized light, was correct in practice.[139]
- 1951 - Linus Pauling determined the structure of the α-helix and the β-sheet in polypeptide chains.[140][141]
- 1951 - Alexei Vasilievich Shubnikov published Symmetry and antisymmetry of finite figures[142][143] which opened up the field of antisymmetry in magnetic structures.
- 1952 - David Sayre suggested that the phase problem could be more easily solved by having at least one more intensity measurement beyond those of the Bragg peaks in each dimension. This concept is understood today as oversampling.[144]
- 1952 - Geoffrey Wilkinson and Ernst Otto Fischer determined the structure of ferrocene, the first metallic sandwich compound, for which they won the 1973 Nobel prize in Chemistry.[145][146] The structure was soon refined by Jack Dunitz, Leslie Orgel, and Alexander Rich.[147][148]
- 1953 - Arne Magnéli introduced the term homologous series to describe polytypes of transition metal oxides that exhibit crystallographic shear structures.[149]
- 1953 - Determination of the structure of DNA by three British teams, for which James Watson, Francis Crick and Maurice Wilkins won the 1962 Nobel Prize in Physiology or Medicine in 1962 (Franklin's death in 1958 made her ineligible for the award).[150][151][152]
- 1954 - Ukichiro Nakaya's book Snow Crystals: Natural and Artificial, dedicated to the modern study of snow crystals, is published.[153]
- 1954 - Linus Pauling won the Nobel Prize in Chemistry "for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances"."[154]
- 1956 - Durward W. J. Cruickshank developed the theoretical framework for anisotropic displacement parameters, also known as the thermal ellipsoid.[155]
- 1956 - James Menter published the first electron microscope images showing the lattice structure of a material.[156]
- 1958 - William Burton Pearson published A Handbook of Lattice Spacings and Structures of Metals and Alloys,[157] where he introduced the Pearson symbols for crystal structure types.
- 1959 - Norio Kato and Andrew Richard Lang observed Pendellösung fringes in X-ray diffraction from silicon and quartz.[158] The observation of similar fringes in neutron diffraction was made by Clifford Shull in 1968.[159]
- 1960 - John Kendrew determined the structure of myoglobin for which he shared the 1962 Nobel Prize in Chemistry.[160]
- 1960 - After many years of research, Max Perutz determined the structure of haemoglobin for which he shared the 1962 Nobel Prize in Chemistry.[161]
- 1960 - Lester Germer and his coworkers at Bell Labs using a flat phosphor screen for the first modern low-energy electron diffraction camera combined with ultra-high vacuum, the start of quantitative surface crystallography.[162][163][164]
- 1962 - Alan Mackay demonstrated that there exists close packing of spheres to yield icosahedral structures.[165]
- 1962 - Michael Rossmann and David Blow laid the foundation for the molecular replacement approach which provides phase information without requiring additional experimental effort.[166]
- 1962 - Max Perutz and John Kendrew shared the Nobel Prize for Chemistry "for their studies of the structures of globular proteins", namely haemoglobin and myoglobin respectively[167]
- 1962 - James Watson, Francis Crick and Maurice Wilkins won the Nobel Prize in Physiology or Medicine "for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material," specifically for their determination of the structure of DNA.[168]
- 1963 - Isabella Karle developed the symbolic addition procedure in direct methods for inverting X-ray diffraction data.[169]
- 1963 - Jürg Waser introduced restrained least square method, also known as regularized least squares, for crystallographic structure fitting.[170]
- 1964 - Dorothy Hodgkin won the Nobel Prize for Chemistry "for her determinations by X-ray techniques of the structures of important biochemical substances." The substances included penicillin and vitamin B12.[171]
- 1965 - David Chilton Phillips, Louise Johnson and their co-workers published the structure of Lysozyme, the first enzyme to have its structure determined.[172][173]
- 1965 - Olga Kennard established the Cambridge Structural Database.[174][175]
- 1967 - Hugo Rietveld invented the Rietveld refinement method for computation of crystal structures.[176]
- 1968 - Erwin Félix Lewy-Bertaut introduced magnetic space groups to account for the spin ordering of magnetic structures observed in neutron crystallography.[177][178]
- 1968 - Aaron Klug and David DeRosier used electron microscopy to visualise the structure of the tail of bacteriophage T4, a common virus, thus signalling a breakthrough in macromolecular structure determination.[179]
- 1968 - Dorothy Hodgkin, after 35 years of work, finally deciphered the structure of insulin.[180]
- 1969 - Benno P. Schoenborn conducted the first structural study of macromolecules (myoglobin) by neutron diffraction [181][182] at the Brookhaven National Laboratory.
- 1970 - Albert Crewe demonstrated imaging of single atoms in a scanning transmission electron microscopy.[183]
- 1971 - Establishment of the Protein Data Bank (PDB). At PDB, Edgar Meyer develops the first general software tools for handling and visualizing protein structural data.[184][185]
- 1971 - Gerd Rosenbaum, Kenneth Holmes, and Jean Witz first discussed the potential of synchrotron X-ray diffraction for biological applications.[186][187]
- 1972 - The first quantitative matching of atomic scale images and dynamical simulations was published by J. G. Allpress, E. A. Hewat, A. F. Moodie and J. V. Sanders.[188]
- 1972 - Michael Glazer established the classification of octahedral tilting patterns in perovskite crystal structures, later also known as the Glazer tilts.[189][190]
- 1973 - Alex Rich's group published the first report of a polynucleotide crystal structure - that of the yeast transfer RNA (tRNA) for phenylalanine.[191]
- 1973 - Geoffrey Wilkinson and Ernst Fischer shared the Nobel Prize in Chemistry "for their pioneering work, performed independently, on the chemistry of the organometallic, so called sandwich compounds", specifically the structure of ferrocene.[192]
- 1976 - Douglas L. Dorset and Herbert A. Hauptman used direct methods to solve crystal structures from electron diffraction data.[193]
- 1976 - Boris Delaunay, building on his work in the 1930s,[194] proved that the regularity of a system of points, an (r, R) system or Delone set, can be established by postulating the points' congruence within a sphere of a defined finite radius.[195]
- 1976 - William Lipscomb won the Nobel Prize in Chemistry "for his studies on the structure of boranes illuminating problems of chemical bonding."[196]
- 1978 - Stephen C. Harrison provided the first high-resolution structure of a virus: tomato bushy stunt virus which is icosahedral in form.[197]
- 1978 - Günter Bergerhoff and I. David Brown initiated the Inorganic Crystal Structure Database.[198][199]
- 1979 - The first award of the Gregori Aminoff Prize for a contribution in the field of crystallography is made by the Royal Swedish Academy of Sciences to Paul Peter Ewald.[200]
- 1979 - A team involving Alfred Y. Cho and others at Bell Labs made the first reconstruction of atomic structures at the materials interface between gallium arsenide and aluminium using X-ray diffraction.[201]
- 1980 - Jerome Karle and Wayne Hendrickson developed multi-wavelength anomalous dispersion (MAD) a technique to facilitate the determination of the three-dimensional structure of biological macromolecules via a solution of the phase problem.[202]
- 1982 - Aaron Klug won the Nobel Prize in Chemistry "for his development of crystallographic electron microscopy and his structural elucidation of biologically important nucleic acid-protein complexes."[203]
- 1983 - John R. Helliwell promoted the use of synchrotron radiation in the crystallography of molecular biology.[204][205]
- 1983 - Effectively simultaneously Ian Robinson used surface X-ray Diffraction (SXRD)[206] to solve the structure of the gold 2x1 (110) surface, Laurence D. Marks used electron microscopy[207] and Gerd Binnig and Heinrich Rohrer used scanning tunneling microscope.[208]
- 1984 - A team led by Dan Shechtman also involving Ilan Blech, Denis Gratias, and John W. Cahn discovered quasicrystals in a metallic alloy. These structures have no unit cell and no periodic translational order but have long-range bond orientational order, which generates a defined diffraction pattern.[209]
- 1984 - Aaron Klug and his colleagues provided an advance in determining the structure of protein–nucleic acid complexes when they solved the structure of the 206-kDa nucleosome core particle.[210]
- 1985 - Jerome Karle shared the Nobel Prize in Chemistry with Herbert A. Hauptman "for their outstanding achievements in the development of direct methods for the determination of crystal structures". Karle developed the theoretical basis for multiple-wavelength anomalous diffraction (MAD).[211]
- 1985 - Hartmut Michel and his colleagues reported the first high-resolution X-ray crystal structure of an integral membrane protein when they published the structure of a photosynthetic reaction centre.[212]
- 1985 - Kunio Takanayagi led a team which solved the structure of the 7x7 reconstruction of the silicon (111) surface using Patterson function methods with ultra-high vacuum electron diffraction.[213][214] This surface structure had defeated many prior attempts.
- 1986 - Ernst Ruska shared the Nobel Prize in Physics "for his fundamental work in electron optics, and for the design of the first electron microscope".[215]
- 1987 - John M. Cowley and Alexander F. Moodie shared the first IUCr Ewald Prize "for their outstanding achievements in electron diffraction and microscopy. They carried out pioneering work on the dynamical scattering of electrons and the direct imaging of crystal structures and structure defects by high-resolution electron microscopy. The physical optics approach used by Cowley and Moodie takes into account many hundreds of scattered beams, and represents a far-reaching extension of the dynamical theory for X-rays, first developed by P.P. Ewald".[216]
- 1987 - Don Craig Wiley and Jack L. Strominger solved the structure of the soluble portion of a class I MHC molecule known as HLA-A2.[217] This structure revealed the presence of a pocket which holds the antigenic peptide, which is recognized by the receptors of T cells only when firmly bound to the MHC product and presented at the surface of an infected cell. This structure strongly influenced the concept of T cell recognition in future work.[218]
- 1988 - Johann Deisenhofer, Robert Huber and Hartmut Michel shared the Nobel Prize in Chemistry "for the determination of the three-dimensional structure of a photosynthetic reaction centre."[219]
- 1989 - Gautam R. Desiraju defined crystal engineering as "the understanding of intermolecular interactions in the context of crystal packing and the utilization of such understanding in the design of new solids with desired physical and chemical properties."[220]
- 1991 - Georg E. Schulz and colleagues reported the structure of a bacterial porin, a membrane protein with a cylindrical shape (a ‘β-barrel').[221]
- 1991 - The crystallographic information file (CIF) format was introduced by Sydney R. Hall, Frank H. Allen, and I. David Brown[222] based on the self-defining text archive and retrieval (STAR) file format developed by Sydney R. Hall.[223]
- 1991 - Sumio Iijima used electron diffraction to determine the structure of carbon nanotubes.[224]
- 1992 - The International Union of Crystallography changed the IUCr's definition of a crystal to "any solid having an essentially discrete diffraction pattern" thus formally recognizing quasicrystals.[225]
- 1992 - First release of the CNS software package by Axel T. Brunger. CNS is an extension of X-PLOR released in 1987,[226] and is used for solving structures based on X-ray diffraction or solution NMR data.[227]
- 1994 - Jan Pieter Abrahams et al. reported the structure of an F1-ATPase which uses the proton-motive force across the inner mitochondrial membrane to facilitate the synthesis of adenosine triphosphate (ATP).[228]
- 1994 - Roger Vincent and Paul Midgley invented the precession electron diffraction method for electron crystallography in a transmission electron microscope.[229]
- 1994 - Bertram Brockhouse and Clifford Shull shared the Nobel Prize in Physics "for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter". Specifically, Brockhouse "for the development of neutron spectroscopy" and Shull "for the development of the neutron diffraction technique."[230]
- 1994 - Philip Coppens led a team of researchers to uncover the transient structure of sodium nitroprusside, a first example in X-ray excited-state crystallography.[231]
- 1995 - Douglas L. Dorset published Structural Electron Crystallography, a major text on electron crystallography.[232]
- 1997 - The Bilbao Crystallographic Server was launched at the University of the Basque Country, led by Mois Ilia Aroyo, Juan Manuel Perez-Mato.[233][234]
- 1997 - The X-ray crystal structure of bacteriorhodopsin was the first time the lipidic cubic phase (LCP) was used to facilitate the crystallization of a membrane protein; LCP has since been used to obtain the structures of many unique membrane proteins, including G protein-coupled receptors (GPCRs).[235]
- 1997 - Paul D. Boyer and John E. Walker shared one half of the Nobel Prize in Chemistry "for their elucidation of the enzymatic mechanism underlying the synthesis of adenosine triphosphate (ATP)" Walker determined the crystal structure of ATP synthase, and this structure confirmed a mechanism earlier proposed by Boyer, mainly on the basis of isotopic studies.[236]
- 1997 - Nobuo Niimura led a team that first used a neutron image plate for structure determination of lysozyme at the Institut Laue–Langevin.[237]
- 1998 - The structure of tubulin and the location of the taxol-binding site is first determined by Eva Nogales and her team using electron crystallography.[238][239]
- 1998 - A group led by Jon Gjønnes combined three-dimensional electron diffraction with precession electron diffraction and direct methods to solve an intermetallic, combining this with dynamical refinements.[240]
- 1999 - Jianwei Miao, Janos Kirz, David Sayre and co-workers performed the first experiment to extend crystallography to allow structural determination of non-crystalline specimens which has become known as coherent diffraction imaging (CDI), lensless imaging, or computational microscopy.[241][242]
- 1999 - A team led by Michael O'Keefe and Omar Yaghi synthesized and determined the structure of MOF-5, the first metal-organic framework (MOF) compound.[243] In the ensuing years, the duo and mathematician Olaf Delgado-Friedrichs further developed the periodic net theory proposed by Alexander F. Wells to characterize MOFs.[244][245][246]
21st century
[edit]- 2000 - Janos Hajdu, Richard Neutze, and colleagues calculated that they could use Sayre's ideas from the 1950s, to implement a ‘diffraction before destruction' concept, using an X-ray free-electron laser (XFEL).[247]
- 2001 - Harry F. Noller's group published the 5.5-Å structure of the complete Thermus thermophilus 70S ribosome. This structure revealed that the major functional regions of the ribosome were based on RNA, establishing the primordial role of RNA in translation.[248]
- 2001 - Roger Kornberg's group published the 2.8-Å structure of Saccharomyces cerevisiae RNA polymerase. The structure allowed both transcription initiation and elongation mechanisms to be deduced. Simultaneously, this group reported the structure of free RNA polymerase II, which contributed towards the eventual visualisation of the interaction between DNA, RNA, and the ribosome.[249][250]
- 2003 - Raimond Ravelli et al. demonstrated X-ray radiation damage-induced phasing method for structure determination.[251]
- 2005 - The first X-ray free-electron laser in the soft X-ray regime, FLASH, became an operational user facility at DESY for X-ray diffraction experiments.[252]
- 2007 - Ute Kolb and co-workers developed automated diffraction tomography for electron crystallography by combining diffraction and tomography within a transmission electron microscope.[253][254][255]
- 2007 - Two X-ray crystal structures of a GPCR, the human β2 adrenergic receptor, were published. Because many drugs elicit their biological effect(s) by binding to a GPCR, the structures of these and other GPCRs may be used to develop efficacious drugs with few side effects.[256][257]
- 2009 - The first hard X-ray free-electron laser, the Linac Coherent Light Source, became operational at the SLAC National Accelerator Laboratory.[258][259]
- 2009 - Luca Bindi, Paul Steinhardt, Nan Yao, and Peter Lu identified the first naturally occurring quasicrystal using X-ray and electron crystallography.[260]
- 2009 - Venkatraman Ramakrishnan, Thomas A. Steitz and Ada E. Yonath shared the Nobel Prize in Chemistry "for studies of the structure and function of the ribosome."[261]
- 2009 - Judith Howard and her collaborators created the Olex2 crystallographic software package.[262]
- 2011 - Gustaaf Van Tendeloo led a team including Sandra Van Aert, Kees Joost Batenburg et. al. determined the 3D atomic positions of a silver nanoparticle using electron tomography.[263]
- 2011 - Dan Shechtman received the Nobel Prize in chemistry "for the discovery of quasicrystals."[264]
- 2011 - Henry N. Chapman, Petra Fromme, John C. H. Spence and 85 co-workers used femtosecond pulses from a Free-electron laser (XFEL) to examine the structure of nanocrystals of Photosystem I. By using very brief x-ray pulses, most radiation damage is mitigated using the technique called serial femtosecond crystallography.[265]
- 2012 - Jianwei Miao and his co-workers applied the coherent diffraction imaging (CDI) method in Atomic Electron Tomography (AET).[266][267]
- 2013 - Tamir Gonen and his co-workers demonstrated microcrystal electron diffraction (microED) for lysozyme microcrystals at the Janelia Farm Research Campus.[268]
- 2014 - Carmelo Giacovazzo published Phasing in Crystallography: A Modern Perspective, a comprehensive opus on phasing methods in X-ray and electron crystallography.[269]
- 2014 - The International Union of Crystallography and UNESCO named 2014 the International Year of Crystallography to commemorate the century of discovery since the invention of X-ray diffraction.[270]
- 2017 - Lukas Palatinus and co-workers used dynamical structure refinement to resolve hydrogen atom positions in nanocrystals using electron diffraction.[271][272]
- 2017 - Jacques Dubochet, Joachim Frank and Richard Henderson shared the Nobel Prize in chemistry "for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution."[273]
- 2019 - The Cambridge Structural Database reached the milestone of one million structures.[274][275]
- 2020 - Two independent groups led respectively by Holger Stark and Sjors Scheres demonstrated that single-particle cryoelectron microscopy has reached atomic resolution.[276][277][278]
- 2021 - Kenneth G. Libbrecht published the book Snow Crystals: A Case Study in Spontaneous Structure Formation, summarizing his decade-spanning work on the subject for engineering conditions for designer ice crystals.[279][280]
- 2022 - Leonid Dubrovinsky, Igor A. Abrikosov, and Natalia Dubrovinskaia led a team that demonstrates high-pressure crystallography in the terapascal regime.[281]
- 2024 - A team led by Anders Madsen developed a deep learning model, PhAI, to solve crystallographic phase problem for small molecules.[282]
References
[edit]- ^ Steno, N. (1669). De solido intra solidum naturaliter contento, Star, Florence
- ^ Molčanov, Krešimir; Stilinović, Vladimir (2014). "Chemical Crystallography before X-ray Diffraction". Angewandte Chemie International Edition. 53 (3): 638–652. doi:10.1002/anie.201301319. PMID 24065378.
- ^ Cappeller, M. A. (1723). Prodromus Crystallographiae De Crystallis Improprie Sic Dictis Commentarium (in Latin). Lucerne: H.R. Wyssing.
- ^ Macquer, P.-J. (1766). Dictionnaire de Chymie, Lacombe, Paris
- ^ Romé de l'Isle, J.-B. L. (1772). Essai de Cristallographie, Knapen & Delaguete, Paris
- ^ Brock, H. (1910). The Catholic Encyclopedia, Robert Appleton Company, New York.
- ^ Haüy, R.J. (1782). Sur la structure des cristaux de grenat, Observations sur la physique, sur l'histoire naturelle et sur les arts, XIX, 366-370
- ^ Haüy, R.J. (1782). Sur la structure des cristaux des spaths calcaires, Observations sur la physique, sur l'histoire naturelle et sur les arts. XX, 33-39
- ^ Romé de l'Isle, J.-B. L. (1783). Cristallographie ou description des formes propres à tous les corps du règne minéral dans l'état de combinaison saline, pierreuse ou métallique, Paris
- ^ Haüy, R.J. (1784). Essai d'une théorie sur la structure des cristaux, appliquée à plusieurs genres de substances cristallisées, Chez Gogué et Née de La Rochelle, Paris
- ^ Haüy, R.J. (1795). Leçons de Physique, in Séances des Ecoles normales ..., L. Reynier, Paris
- ^ Haüy, R.J. (1801). Traité de Minéralogie, Chez Louis, Paris
- ^ Haüy, R.J. (1822). Traité de Cristallographie, Bachelier et Huzard, Paris
- ^ de Dolomieu, Déodat (1801). Sur la philosophie minéralogique et sur l'espèce minéralogique, Paris
- ^ Haüy, R.J. (1815). Memoire sur une loi de cristallisation appelée loi de symmétrie, Mémoires du Muséum d'Histoire naturelle 1, 81-101, 206-225, 273-298, 341-352
- ^ Weiss, C.S. (1815). Uebersichtliche Darstellung der versschiedenen naturlichen Abteilungen der Kristallisations-Systeme, Abh. K. Akad. Wiss., Berlin. 289-337, 1814-1815.
- ^ Melhado, Evan M. (1980-01-01). "Mitscherlich's discovery of isomorphism". Historical Studies in the Physical Sciences. 11 (1): 87–123. doi:10.2307/27757472. ISSN 0073-2672. JSTOR 27757472.
- ^ Mohs, F. (1822). On the crystallographic discoveries and systems of Weiss and Mohs, The Edinburgh Philosophical Journal, VIII, 275-290
- ^ Neumann, F.E. (1823). Beiträge zur Krystallonomie, Ernst Siegfried Mittler, Berlin und Posen
- ^ Seeber, L.A. (1824). Versuch einer Erklärung des inneren Baues der Festen Körper, Ann. Phys., 76, 229-248, 349-371
- ^ Frankenheim, M.L. (1826). Crystallonomische Aufsätze, Isis (Jena), 19, 497-515, 542-565
- ^ Hessel J.F.C. (1830). Krystallometrie oder Krystallonomie und Krystallographie, in Gehler's Physikalisches Wörterbuch, 8, 1023-1360, Schwickert, Leipzig
- ^ Wöhler; Liebig (1832). "Untersuchungen über das Radikal der Benzoesäure". Annalen der Pharmacie (in German). 3 (3): 249–282. doi:10.1002/jlac.18320030302. hdl:2027/hvd.hxdg3f.
- ^ Miller, W.H. (1839). A Treatise on Crystallography, Deighton-Parker, Cambridge, London
- ^ Delafosse, G. (1840). De la Structure des Cristaux [...] sur l'Importance de l'etude de la Symétrie dans les différentes Branches de l'Histoire Naturelle [...], Fain and Thunot, Paris
- ^ Frankenheim, M.L. (1842). System der Kristalle. Nova Acta Acad. Naturae Curiosorum, 19, (2), 469-660
- ^ Pasteur, L. (1848). Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire (Memoir on the relationship that can exist between crystalline form and chemical composition, and on the cause of rotary polarization), Comptes rendus de l'Académie des sciences (Paris), 26, 535–538
- ^ Vantomme, Ghislaine; Crassous, Jeanne (2021). "Pasteur and chirality: A story of how serendipity favors the prepared minds". Chirality. 33 (10): 597–601. doi:10.1002/chir.23349. ISSN 0899-0042. PMC 9291139. PMID 34363261.
- ^ Bravais, A. (1850). Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l'espace, J. l'Ecole Polytechnique 19, 1-128
- ^ Bravais, M.A. (1949). On the systems formed by points regularly distributed on a plane or in space, English translation by Shaler, A.J., Crystallographic Society of America, Michigan. OCLC 1123365404
- ^ Gadolin, A. (1871). Mémoire sur la déduction d'un seul principe de tous les systems cristallographiques avec leurs subdivisions (Memoir on the deduction from a single principle of all the crystal systems with their subdivisions), Acta Soc. Sci. Fennicae., 9, 1-71
- ^ Authier, A. (2013). Early days of x-ray crystallography, International Union of Crystallography Texts on Crystallography, Oxford University Press, Oxford, p.83 ISBN 9780198754053
- ^ Mallard, E.-F. (1877). Explication des phénomènes optiques anomaux, Dunod, Paris, 143pp.
- ^ Nolze, Gert; Tokarski, Tomasz; Rychłowski, Łukasz (2023). "Use of electron backscatter diffraction patterns to determine the crystal lattice. Part 3. Pseudosymmetry". Journal of Applied Crystallography. 56 (2): 367–380. Bibcode:2023JApCr..56..367N. doi:10.1107/S1600576723000845. PMC 10077860. PMID 37032972.
- ^ Sohncke, L. (1879). Entwickelung einer Theorie der Krystallstruktur, B.G. Teubner, Leipzig
- ^ Reinitzer, Friedrich (1888). "Beiträge zur Kenntniss des Cholesterins". Monatshefte für Chemie - Chemical Monthly. 9: 421–441. doi:10.1007/BF01516710.
- ^ Lehmann, O. (1889). "Über fliessende Krystalle". Zeitschrift für Physikalische Chemie. 4U: 462–472. doi:10.1515/zpch-1889-0434.
- ^ Fedorov, E. (1891). The symmetry of regular systems of figures, Zap. Miner. Obshch. (Trans. Miner. Soc. Saint Petersburg), 28, 1-146
- ^ Schoenflies, A. (1891). Kristallsysteme und Kristallstruktur. B. G. Teubner, Leipzig
- ^ Barlow W. (1894). Über die Geometrischen Eigenschaften homogener starrer Strukturen und ihre Anwendung auf Krystalle (On the geometrical properties of homogeneous rigid structures and their application to crystals), Zeitschrift für Krystallographie und Minerologie, 23, 1–63.
- ^ Curie, P. (1894). "Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique". Journal de Physique Théorique et Appliquée. 3 (1): 393–415. doi:10.1051/jphystap:018940030039300. ISSN 0368-3893.
- ^ De Gennes, P. G. (1982). "Pierre curie and the role of symmetry in physical laws". Ferroelectrics. 40 (1): 125–129. Bibcode:1982Fer....40..125D. doi:10.1080/00150198208218162. ISSN 0015-0193.
- ^ "On a New Kind of Rays". Nature. 53 (1369): 274–276. 1896. doi:10.1038/053274b0.
- ^ Haga, H.; Wind, C. H. (1899). "Die Beugung der Röntgenstrahlen". Annalen der Physik. 304 (8): 884–895. Bibcode:1899AnP...304..884H. doi:10.1002/andp.18993040820. ISSN 0003-3804.
- ^ Barkla, C.G. (1905). "XIII. Polarised röntgen radiation". Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. 204 (372–386): 467–479. doi:10.1098/rsta.1905.0013. ISSN 0264-3952.
- ^ Walter, B.; Pohl, R. (1908). "Zur Frage der Beugung der Röntgenstrahlen". Annalen der Physik (in German). 330 (4): 715–724. Bibcode:1908AnP...330..715W. doi:10.1002/andp.19083300405.
- ^ Walter, B.; Pohl, R. (1909). "Weitere Versuche über die Beugung der Röntgenstrahlen". Annalen der Physik (in German). 334 (7): 331–354. Bibcode:1909AnP...334..331W. doi:10.1002/andp.19093340707.
- ^ Laue, Max von (1912). Eine quantitative prüfung der theorie für die interferenz-erscheinungen bei Röntgenstrahlen, Sitzungsberichte der Kgl. Bayer. Akad. Der Wiss., 363–373
- ^ Bragg, W.L. (1913). The diffraction of short electromagnetic waves by a crystal, Proc. Cambridge Phil. Soc., 17, 43-57
- ^ Baumhauer, Heinrich (1912-12-01). "VII. Über die Krystalle des Carborundums". Zeitschrift für Kristallographie - Crystalline Materials. 50 (1–6): 33–39. doi:10.1524/zkri.1912.50.1.33. ISSN 2196-7105. S2CID 102105832.
- ^ Bragg, W. L. (1913). "The structure of some crystals as indicated by their diffraction of X-rays". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 89 (610): 248–277. Bibcode:1913RSPSA..89..248B. doi:10.1098/rspa.1913.0083.
- ^ Terada, T. (1913). "X-Rays and Crystals". Nature. 91 (2267): 135–136. Bibcode:1913Natur..91..135T. doi:10.1038/091135c0. ISSN 0028-0836.
- ^ Terada, T. (1913). "X-Rays and Crystals". Nature. 91 (2270): 213. Bibcode:1913Natur..91..213T. doi:10.1038/091213b0. ISSN 0028-0836.
- ^ Komiya, Akira (2023-02-26). "Terada Torahiko, a Physicist and a Haikai Poet". CLCWeb: Comparative Literature and Culture. 24 (5). doi:10.7771/1481-4374.3419. ISSN 1481-4374.
- ^ Friedel G. (1913). Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen, Comptes Rendus., 157, 1533–1536
- ^ "The Nobel Prize in Physics 1914"
- ^ Bragg, W. H.; Bragg, W. L. "X rays and crystal structure". Rootenberg Rare Books & Manuscripts. Retrieved 2024-05-14.
- ^ "The Nobel Prize in Physics 1915"
- ^ Debye, P. and Scherrer P. (1916). Interferenzen an regellos orientierten Teilchen im Röntgenlicht. I., Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1-15. eudml
.org /doc /58947 - ^ Ewald, P. P. (1916). "Zur Begründung der Kristalloptik". Annalen der Physik (in German). 354 (2): 117–143. Bibcode:1916AnP...354..117E. doi:10.1002/andp.19163540202.
- ^ Hull., A. W. (1917). "A New Method of X-Ray Crystal Analysis". Physical Review. 10 (6): 661–696. Bibcode:1917PhRv...10..661H. doi:10.1103/PhysRev.10.661.
- ^ Suits, C.G. and Lafferty, J.M. (1970). Albert Wallace Hull 1880—1966: a biographical memoir, National Academy of Sciences, Washington D.C., 20pp.
- ^ Herzog, R. O.; Jancke, Willi (1920). "Röntgenspektrographische Beobachtungen an Zellulose.: Vorläufige Mitteilung". Zeitschrift für Physik (in German). 3 (3): 196–198. doi:10.1007/BF01331987. ISSN 1434-6001.
- ^ Ewald, P. P. (1921). "Die Berechnung optischer und elektrostatischer Gitterpotentiale". Annalen der Physik. 369 (3): 253–287. Bibcode:1921AnP...369..253E. doi:10.1002/andp.19213690304. ISSN 0003-3804.
- ^ Darwin, C.G. (1922). "XCII. The reflexion of X-rays from imperfect crystals". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 43 (257): 800–829. doi:10.1080/14786442208633940. ISSN 1941-5982.
- ^ Bragg, W. Lawrence; Darwin, C.G.; James, R.W. (1926). "LXXXI. The intensity of reflexion of X-rays by crystals". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1 (5): 897–922. doi:10.1080/14786442608633693. ISSN 1941-5982.
- ^ Wyckoff, R.W.G. (1922). The analytical expression of the results of the theory of space-groups, Carnegie Institute of Washington. OCLC 3557642
- ^ Dickinson, Roscoe G.; Raymond, Albert L. (1923). "The Crystal Structure of Hexamethylene-Tetramine" (PDF). Journal of the American Chemical Society. 45: 22–29. doi:10.1021/ja01654a003.
- ^ Gonell, H. W.; Mark, H. (1923). "Röntgenographische Bestimmung der Strukturformel des Hexamethylentetramins". Zeitschrift für Physikalische Chemie. 107U: 181–218. doi:10.1515/zpch-1923-10715.
- ^ Bragg, William; Gibbs, R. E. (1925). "The structure of α and β quartz". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 109 (751): 405–427. Bibcode:1925RSPSA.109..405B. doi:10.1098/rspa.1925.0135.
- ^ Gibbs, Reginald E. (1928). "Quartz". Science Progress in the Twentieth Century (1919-1933). 22 (88): 613–629. ISSN 2059-4941. JSTOR 43428597.
- ^ Ewald, P. P. (1923). Kristalle und Röntgenstrahlen (in German). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-47458-3. ISBN 978-3-642-47158-2.
- ^ de Broglie, Louis Victor. "On the Theory of Quanta" (PDF). Foundation of Louis de Broglie (English translation by A.F. Kracklauer, 2004. ed.). Retrieved 25 February 2023.
- ^ Bernal, J. D. (1924). "The structure of graphite". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 106 (740): 749–773. Bibcode:1924RSPSA.106..749B. doi:10.1098/rspa.1924.0101.
- ^ Goldschmidt, V. M. (1926). Geochemische Verteilungsgesetze, VII: Die Gesetze der Krystallochemie, Skrifter Norsk. Vid. Akademie, Oslo, Mat. Nat. Kl.
- ^ Zernike, F.; Prins, J. A. (1927). "Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung". Zeitschrift für Physik a Hadrons and nuclei (in German). 41 (2–3): 184–194. Bibcode:1927ZPhy...41..184Z. doi:10.1007/BF01391926. ISSN 0939-7922.
- ^ Davisson, C.; Germer, L. H. (1927). "The Scattering of Electrons by a Single Crystal of Nickel". Nature. 119 (2998): 558–560. Bibcode:1927Natur.119..558D. doi:10.1038/119558a0. ISSN 0028-0836. S2CID 4104602.
- ^ Davisson, C.; Germer, L. H. (1927). "Diffraction of Electrons by a Crystal of Nickel". Physical Review. 30 (6): 705–740. Bibcode:1927PhRv...30..705D. doi:10.1103/physrev.30.705. ISSN 0031-899X.
- ^ Davisson, C. J.; Germer, L. H. (1928). "Reflection of Electrons by a Crystal of Nickel". Proceedings of the National Academy of Sciences. 14 (4): 317–322. Bibcode:1928PNAS...14..317D. doi:10.1073/pnas.14.4.317. ISSN 0027-8424. PMC 1085484. PMID 16587341.
- ^ Davisson, C. J.; Germer, L. H. (1928). "Reflection and Refraction of Electrons by a Crystal of Nickel". Proceedings of the National Academy of Sciences. 14 (8): 619–627. Bibcode:1928PNAS...14..619D. doi:10.1073/pnas.14.8.619. ISSN 0027-8424. PMC 1085652. PMID 16587378.
- ^ Thomson, G. P.; Reid, A. (1927). "Diffraction of Cathode Rays by a Thin Film". Nature. 119 (3007): 890. Bibcode:1927Natur.119Q.890T. doi:10.1038/119890a0. ISSN 0028-0836. S2CID 4122313.
- ^ Reid, Alexander (1928). "The diffraction of cathode rays by thin celluloid films". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 119 (783): 663–667. Bibcode:1928RSPSA.119..663R. doi:10.1098/rspa.1928.0121. ISSN 0950-1207. S2CID 98311959.
- ^ Navarro, Jaume (2010). "Electron diffraction chez Thomson: early responses to quantum physics in Britain". The British Journal for the History of Science. 43 (2): 245–275. doi:10.1017/S0007087410000026. ISSN 0007-0874. S2CID 171025814.
- ^ Machatschki, F. (1928). Zur Frage der Struktur und Konstitution der Feldspäte, Zentralbl. Min., 97–100
- ^ Lonsdale, K. (1928). "The Structure of the Benzene Ring". Nature. 122 (3082): 810. Bibcode:1928Natur.122..810L. doi:10.1038/122810c0.
- ^ Niggli, Paul (1928). Krystallographische und strukturtheoretische Grundbegriffe (in German). Leipzig: Akad. Verl.-Ges. OCLC 180664864.
- ^ Bethe, H. (1928). "Theorie der Beugung von Elektronen an Kristallen". Annalen der Physik. 392 (17): 55–129. Bibcode:1928AnP...392...55B. doi:10.1002/andp.19283921704. ISSN 0003-3804.
- ^ Hermann, C. (1928). "XVI. Zur systematischen Strukturtheorie". Zeitschrift für Kristallographie - Crystalline Materials. 68 (1–6): 257–287. doi:10.1524/zkri.1928.68.1.257.
- ^ Mauguin, Ch. (1931). "Sur le symbolisme des groupes de repetition on de symetrie des assemblages cristallins". Zeitschrift für Kristallographie - Crystalline Materials. 76 (1–6): 542–558. doi:10.1524/zkri.1931.76.1.542.
- ^ Pauling, Linus (1929). "The Principles Determining the Structure of Complex Ionic Crystals". Journal of the American Chemical Society. 51 (4): 1010–1026. doi:10.1021/ja01379a006.
- ^ "The crystal structure of ice between 0 °C. and —183 °C". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 125 (799): 670–693. 1929. doi:10.1098/rspa.1929.0195. ISSN 0950-1207.
- ^ Bragg, W. L. (1930). "XXV. The Structure of Silicates". Zeitschrift für Kristallographie - Crystalline Materials. 74 (1–6): 237–305. doi:10.1524/zkri.1930.74.1.237.
- ^ Mark, Herman; Wierl, Raymond (1930). "Neuere Ergebnisse der Elektronenbeugung". Die Naturwissenschaften. 18 (36): 778–786. Bibcode:1930NW.....18..778M. doi:10.1007/bf01497860. ISSN 0028-1042. S2CID 9815364.
- ^ Mark, Herman; Wiel, Raymond (1930). "Die ermittlung von molekülstrukturen durch beugung von elektronen an einem dampfstrahl". Zeitschrift für Elektrochemie und angewandte physikalische Chemie. 36 (9): 675–676. doi:10.1002/bbpc.19300360921. S2CID 178706417.
- ^ Ewald, Paul Peter; Hermann, C (1931). Strukturbericht, 1913-1928 (in German). Leipzig: Akademische Verlagsgesellschaft. OCLC 29150452.
- ^ Laves, F. (1931). "Ebenenteilung und Koordinationszahl". Zeitschrift für Kristallographie - Crystalline Materials. 78 (1–6): 208–241. doi:10.1524/zkri.1931.78.1.208.
- ^ Zachariasen, W. H. (1932). "The Atomic Arrangement in Glass". Journal of the American Chemical Society. 54 (10): 3841–3851. doi:10.1021/ja01349a006.
- ^ Rinne, Friedrich (1932-11-01). "Über Beziehungen der gewässerten Bromphenanthrensulfosäure zu organismischen Parakristallen". Zeitschrift für Kristallographie - Crystalline Materials. 82 (1–6): 379–393. doi:10.1524/zkri.1932.82.1.379. ISSN 2196-7105. S2CID 100926260.
- ^ Rinne, Friedrich (1933). "Investigations and considerations concerning paracrystallinity". Transactions of the Faraday Society. 29 (140): 1016–1032. doi:10.1039/TF9332901016. ISSN 0014-7672.
- ^ Laschkarew, W. E.; Usyskin, I. D. (1933). "Die Bestimmung der Lage der Wasserstoffionen im NH4Cl-Kristallgitter durch Elektronenbeugung". Zeitschrift für Physik (in German). 85 (9–10): 618–630. Bibcode:1933ZPhy...85..618L. doi:10.1007/BF01331003. ISSN 1434-6001. S2CID 123199621.
- ^ Patterson, A. L. (1934). "A Fourier Series Method for the Determination of the Components of Interatomic Distances in Crystals". Physical Review. 46 (5): 372–376. Bibcode:1934PhRv...46..372P. doi:10.1103/PhysRev.46.372.
- ^ Frondel, C. (1988). Memorial of Martin Julian Buerger, April 8, 1903 - February 26, 1986, American Mineralogist, 73 (11-12), 1483-1485, 1988
- ^ Beevers, C. A.; Lipson, H. (1934). "The crystal structure of copper sulphate pentahydrate, CuSO 4 .5H 2 O". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 146 (858): 570–582. Bibcode:1934RSPSA.146..570B. doi:10.1098/rspa.1934.0173.
- ^ Beevers, CA; Lipson, H. (1985). "A Brief History of Fourier Methods in Crystal-structure Determination". Australian Journal of Physics. 38 (3): 263. Bibcode:1985AuJPh..38..263B. doi:10.1071/PH850263.
- ^ Laves, F. and Löhberg, K. (1934). Die Kristallstruktur von intermetallischen Verbindungen der Formel AB2, Nachr. Ges. Wiss. Göttingen 1, 59-66.
- ^ Laves, F. and Witte, H. (1935). Die Kristallstruktur des MgNi2 und seine Beziehungen zu den Typen des MgCu2 und MgZn2, Metallwirtschaft, 14, 645-649.
- ^ Schulze, Gustav E. R. (1939). "Zur Kristallchemie der intermetallischen AB2-Verbindungen (Laves-Phasen)". Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie. 45 (12): 849–865. doi:10.1002/bbpc.19390451202.
- ^ Barrett, C. and Massalski, T.B. (1980). Structure of metals, 3rd rev. ed., Pergamon Press, Oxford, 256-259. ISBN 9780080261713
- ^ Hermann, C. (ed.) (1935). Internationale Tabellen zur Bestimmung von Kristallstrukturen, 2 vols., Gebrüder, Berlin, 692pp. OCLC 2131165
- ^ Brock, C. (2014). International Tables for Crystallography, IUCr Newsletter, 22 (2).
- ^ "X-Ray studies of the structure of hair, wool, and related fibres. II.- the molecular structure and elastic properties of hair keratin". Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. 232 (707–720): 333–394. 1933. doi:10.1098/rsta.1934.0010.
- ^ Astbury, W. T.; Sisson, Wayne A. (1935). "X-ray studies of the structure of hair, wool, and related fibres - III—The configuration of the keratin molecule and its orientation in the biological cell". Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences. 150 (871): 533–551. Bibcode:1935RSPSA.150..533A. doi:10.1098/rspa.1935.0121.
- ^ "The Nobel Prize in Chemistry 1936"
- ^ Boersch, H. (1936). "Über das primäre und sekundäre Bild im Elektronenmikroskop. II. Strukturuntersuchung mittels Elektronenbeugung". Annalen der Physik (in German). 419 (1): 75–80. Bibcode:1936AnP...419...75B. doi:10.1002/andp.19364190107.
- ^ Hirsch, P. B.; Howie, A.; Nicholson, R. B.; Pashley, D. W.; Whelan, M. J. (1965). Electron microscopy of thin crystals. London: Butterworths. ISBN 0-408-18550-3. OCLC 2365578.
- ^ "The Nobel Prize in Physics 1937"
- ^ "Pauling, The Nature of the Chemical Bond, 1939 (first edition)". Patrick's Rare Books. Retrieved 2024-06-03.
- ^ Guinier, André (1939). "La diffraction des rayons X aux très petits angles : application à l'étude de phénomènes ultramicroscopiques". Annales de Physique (in French). 11 (12): 161–237. Bibcode:1939AnPh...11..161G. doi:10.1051/anphys/193911120161. ISSN 0003-4169.
- ^ Kossel, W.; Möllenstedt, G. (1939). "Elektroneninterferenzen im konvergenten Bündel". Annalen der Physik. 428 (2): 113–140. Bibcode:1939AnP...428..113K. doi:10.1002/andp.19394280204. ISSN 0003-3804.
- ^ Goodman, P.; Lehmpfuhl, G. (1968). "Observation of the breakdown of Friedel's law in electron diffraction and symmetry determination from zero-layer interactions". Acta Crystallographica Section A. 24 (3): 339–347. Bibcode:1968AcCrA..24..339G. doi:10.1107/S0567739468000677.
- ^ Buxton, B. F.; Eades, J. A.; Steeds, John Wickham; Rackham, G. M.; Frank, Frederick Charles (1976). "The symmetry of electron diffraction zone axis patterns". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 281 (1301): 171–194. Bibcode:1976RSPTA.281..171B. doi:10.1098/rsta.1976.0024. S2CID 122890943.
- ^ Steeds, J. W.; Vincent, R. (1983). "Use of high-symmetry zone axes in electron diffraction in determining crystal point and space groups". Journal of Applied Crystallography. 16 (3): 317–324. Bibcode:1983JApCr..16..317S. doi:10.1107/S002188988301050X. ISSN 0021-8898.
- ^ Bird, D. M. (1989). "Theory of zone axis electron diffraction". Journal of Electron Microscopy Technique. 13 (2): 77–97. doi:10.1002/jemt.1060130202. ISSN 0741-0581. PMID 2681572.
- ^ Tanaka, M.; Saito, R.; Sekii, H. (1983). "Point-group determination by convergent-beam electron diffraction". Acta Crystallographica Section A. 39 (3): 357–368. Bibcode:1983AcCrA..39..357T. doi:10.1107/S010876738300080X. ISSN 0108-7673.
- ^ Tanaka, M.; Saito, R.; Watanabe, D. (1980). "Symmetry determination of the room-temperature form of LnNbO 4 (Ln = La,Nd) by convergent-beam electron diffraction". Acta Crystallographica Section A. 36 (3): 350–352. Bibcode:1980AcCrA..36..350T. doi:10.1107/S0567739480000800. ISSN 0567-7394. S2CID 98184340.
- ^ Messick, Julian. "The history of the ICDD" (PDF).
- ^ Brindley, G. W.; Robinson, Keith (1945). "Structure of kaolinite". Nature. 156 (3970): 661–662. Bibcode:1945Natur.156R.661B. doi:10.1038/156661b0. ISSN 1476-4687. S2CID 4054610.
- ^ Megaw, Helen (1945). "Crystal Structure of Barium Titanate". Nature. 155 (3938): 484–485. Bibcode:1945Natur.155..484.. doi:10.1038/155484b0. ISSN 0028-0836.
- ^ Wells, A.F. (1945). Structural inorganic chemistry, Clarendon Press, Oxford, 590pp. OCLC 1319058.
- ^ Kamminga, H. (1989). "The International Union of Crystallography: its formation and early development". Acta Crystallographica Section A. 45 (9): 581–601. Bibcode:1989AcCrA..45..581K. doi:10.1107/S0108767389003910.
- ^ "The Nobel Prize in Chemistry 1946"
- ^ Ramsdell, Lewis S. (1947). "Studies on silicon carbide" (PDF). American Mineralogist. 32 (1–2): 64–82. ISSN 0003-004X.
- ^ "First General Assembly and International Congress". Acta Crystallographica. 1 (6): 340–343. 1948-12-01. Bibcode:1948AcCry...1..340.. doi:10.1107/s0365110x48000910. ISSN 0365-110X.
- ^ "Editorial Preface". Acta Crystallographica. 1 (1): 1–2. 1948. Bibcode:1948AcCry...1....1.. doi:10.1107/S0365110X48000016.
- ^ Wollan, E. O.; Shull, C. G. (1948-04-15). "The Diffraction of Neutrons by Crystalline Powders". Physical Review. 73 (8): 830–841. Bibcode:1948PhRv...73..830W. doi:10.1103/PhysRev.73.830. ISSN 0031-899X.
- ^ Pake, G. E. (1948-04-01). "Nuclear Resonance Absorption in Hydrated Crystals: Fine Structure of the Proton Line". The Journal of Chemical Physics. 16 (4): 327–336. Bibcode:1948JChPh..16..327P. doi:10.1063/1.1746878. ISSN 0021-9606.
- ^ Shull, C. G.; Smart, J. Samuel (1949). "Detection of Antiferromagnetism by Neutron Diffraction". Physical Review. 76 (8): 1256–1257. Bibcode:1949PhRv...76.1256S. doi:10.1103/PhysRev.76.1256.2.
- ^ Karle, J.; Hauptman, H. (1950). "The phases and magnitudes of the structure factors". Acta Crystallographica. 3 (3): 181–187. Bibcode:1950AcCry...3..181K. doi:10.1107/S0365110X50000446.
- ^ Bijvoet, J. M.; Peerdeman, A. F.; Van Bommel, A. J. (1951). "Determination of the Absolute Configuration of Optically Active Compounds by Means of X-Rays". Nature. 168 (4268): 271–272. Bibcode:1951Natur.168..271B. doi:10.1038/168271a0.
- ^ Pauling, Linus; Corey, Robert B.; Branson, H. R. (1951). "The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain". Proceedings of the National Academy of Sciences. 37 (4): 205–211. Bibcode:1951PNAS...37..205P. doi:10.1073/pnas.37.4.205. PMC 1063337. PMID 14816373.
- ^ Pauling, Linus; Corey, Robert B. (1951). "The Pleated Sheet, A New Layer Configuration of Polypeptide Chains". Proceedings of the National Academy of Sciences. 37 (5): 251–256. Bibcode:1951PNAS...37..251P. doi:10.1073/pnas.37.5.251. PMC 1063350. PMID 14834147.
- ^ Shubnikov, A.V. (1951). Symmetry and antisymmetry of finite figures, Izv. Akad. Nauk SSSR, Moscow (in Russian)
- ^ Shubnikov, A.V. and Belov, N.V. (1964). Colored Symmetry, Holser, W.T. (ed.), New York, Pergamon. OCLC 530340
- ^ Sayre, D. (1952). "Some implications of a theorem due to Shannon". Acta Crystallographica. 5 (6): 843. Bibcode:1952AcCry...5..843S. doi:10.1107/S0365110X52002276.
- ^ Fischer, E. O.; Pfab, W. (1952). "Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen". Zeitschrift für Naturforschung B. 7 (7): 377–379. doi:10.1515/znb-1952-0701.
- ^ Wilkinson, Geoffrey (1975). "The iron sandwich. A recollection of the first four months". Journal of Organometallic Chemistry. 100: 273–278. doi:10.1016/S0022-328X(00)88947-0.
- ^ Dunitz, J. D.; Orgel, L. E. (1953). "Bis-cyclopentadienyl Iron: a Molecular Sandwich". Nature. 171 (4342): 121–122. Bibcode:1953Natur.171..121D. doi:10.1038/171121a0. ISSN 0028-0836.
- ^ Dunitz, J. D.; Orgel, L. E.; Rich, A. (1956-04-10). "The crystal structure of ferrocene". Acta Crystallographica. 9 (4): 373–375. Bibcode:1956AcCry...9..373D. doi:10.1107/S0365110X56001091.
- ^ Magnéli, A. (1953-06-10). "Structures of the ReO3-type with recurrent dislocations of atoms: 'homologous series' of molybdenum and tungsten oxides". Acta Crystallographica. 6 (6): 495–500. Bibcode:1953AcCry...6..495M. doi:10.1107/S0365110X53001381. ISSN 0365-110X. S2CID 98622295.
- ^ Watson, J. D.; Crick, F. H. C. (1953). "Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid". Nature. 171 (4356): 737–738. Bibcode:1953Natur.171..737W. doi:10.1038/171737a0. PMID 13054692.
- ^ Franklin, Rosalind E.; Gosling, R. G. (1953). "Molecular Configuration in Sodium Thymonucleate". Nature. 171 (4356): 740–741. Bibcode:1953Natur.171..740F. doi:10.1038/171740a0. PMID 13054694.
- ^ Wilkins, M. H. F.; Stokes, A. R.; Wilson, H. R. (1953). "Molecular Structure of Nucleic Acids: Molecular Structure of Deoxypentose Nucleic Acids". Nature. 171 (4356): 738–740. Bibcode:1953Natur.171..738W. doi:10.1038/171738a0. PMID 13054693.
- ^ Ukichiro Nakaya (2013). Snow crystals. Cambridge: Harvard Univ Press. ISBN 978-0-674-18276-9. OCLC 900567451.
- ^ "The Nobel Prize in Chemistry 1954"
- ^ Cruickshank, D. W. J. (1956-09-01). "The analysis of the anisotropic thermal motion of molecules in crystals". Acta Crystallographica. 9 (9): 754–756. Bibcode:1956AcCry...9..754C. doi:10.1107/s0365110x56002047. ISSN 0365-110X.
- ^ Menter, J. W. (1956). "The direct study by electron microscopy of crystal lattices and their imperfections". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 236 (1204): 119–135. Bibcode:1956RSPSA.236..119M. doi:10.1098/rspa.1956.0117. ISSN 0080-4630.
- ^ Pearson, W. B. (1958). A Handbook of Lattice Spacings and Structures of Metals and Alloys. Elsevier. doi:10.1016/c2013-0-08243-6. ISBN 978-1-4832-1318-7.
- ^ Kato, N.; Lang, A. R. (1959-10-10). "A study of pendellösung fringes in X-ray diffraction". Acta Crystallographica. 12 (10): 787–794. Bibcode:1959AcCry..12..787K. doi:10.1107/S0365110X59002262.
- ^ Shull, C. G. (1968-12-02). "Observation of Pendellösung Fringe Structure in Neutron Diffraction". Physical Review Letters. 21 (23): 1585–1589. Bibcode:1968PhRvL..21.1585S. doi:10.1103/PhysRevLett.21.1585. ISSN 0031-9007.
- ^ Kendrew, J. C.; Dickerson, R. E.; Strandberg, B. E.; Hart, R. G.; Davies, D. R.; Phillips, D. C.; Shore, V. C. (1960). "Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution". Nature. 185 (4711): 422–427. Bibcode:1960Natur.185..422K. doi:10.1038/185422a0. PMID 18990802.
- ^ Perutz, M. F.; Rossmann, M. G.; Cullis, ANN F.; Muirhead, Hilary; Will, Georg; North, A. C. T. (1960). "Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis". Nature. 185 (4711): 416–422. Bibcode:1960Natur.185..416P. doi:10.1038/185416a0. PMID 18990801.
- ^ Scheibner, E. J.; Germer, L. H.; Hartman, C. D. (1960-02-01). "Apparatus for Direct Observation of Low-Energy Electron Diffraction Patterns". Review of Scientific Instruments. 31 (2): 112–114. Bibcode:1960RScI...31..112S. doi:10.1063/1.1716903. ISSN 0034-6748.
- ^ Germer, L. H.; Hartman, C. D. (1960-07-01). "Improved Low Energy Electron Diffraction Apparatus". Review of Scientific Instruments. 31 (7): 784. Bibcode:1960RScI...31..784G. doi:10.1063/1.1717051. ISSN 0034-6748.
- ^ Germer, Lester H. (1965). "The Structure of Crystal Surfaces". Scientific American. 212 (3): 32–41. Bibcode:1965SciAm.212c..32G. doi:10.1038/scientificamerican0365-32. ISSN 0036-8733. JSTOR 24931809.
- ^ Mackay, A. L. (1962-09-01). "A dense non-crystallographic packing of equal spheres". Acta Crystallographica. 15 (9): 916–918. Bibcode:1962AcCry..15..916M. doi:10.1107/S0365110X6200239X. ISSN 0365-110X.
- ^ Rossmann, M. G.; Blow, D. M. (1962). "The detection of sub-units within the crystallographic asymmetric unit". Acta Crystallographica. 15 (1): 24–31. Bibcode:1962AcCry..15...24R. doi:10.1107/S0365110X62000067.
- ^ "The Nobel Prize in Chemistry 1962"
- ^ "The Nobel Prize in Medicine 1962"
- ^ Karle, I. L.; Karle, J. (1963). "An application of a new phase determination procedure to the structure of cyclo(hexaglycyl)demihydrate". Acta Crystallographica. 16 (10): 969–975. Bibcode:1963AcCry..16..969K. doi:10.1107/S0365110X63002607.
- ^ Waser, J. (1963-11-10). "Least-squares refinement with subsidiary conditions". Acta Crystallographica. 16 (11): 1091–1094. Bibcode:1963AcCry..16.1091W. doi:10.1107/S0365110X63002929.
- ^ "The Nobel Prize in Chemistry 1964"
- ^ Blake, C. C. F.; Koenig, D. F.; Mair, G. A.; North, A. C. T.; Phillips, D. C.; Sarma, V. R. (1965). "Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 Å Resolution". Nature. 206 (4986): 757–761. Bibcode:1965Natur.206..757B. doi:10.1038/206757a0. PMID 5891407.
- ^ Johnson, Louise N.; Phillips, D. C. (1965). "Structure of Some Crystalline Lysozyme-Inhibitor Complexes Determined by X-Ray Analysis at 6 Å Resolution". Nature. 206 (4986): 761–763. Bibcode:1965Natur.206..761J. doi:10.1038/206761a0. PMID 5840126.
- ^ Kennard, Olga. "From private data to public knowledge" (PDF).
- ^ "History of the CCDC timeline | CCDC". www.ccdc.cam.ac.uk. Retrieved 2024-05-11.
- ^ Rietveld, H. M. (1967). "Line profiles of neutron powder-diffraction peaks for structure refinement". Acta Crystallographica. 22 (1): 151–152. Bibcode:1967AcCry..22..151R. doi:10.1107/S0365110X67000234.
- ^ Bertaut, E. F. (1968-01-23). "Representation analysis of magnetic structures". Acta Crystallographica Section A. 24 (1): 217–231. Bibcode:1968AcCrA..24..217B. doi:10.1107/S0567739468000306.
- ^ Bertaut, E. F. (1971). "Magnetic Structure Analysis and Group Theory". Le Journal de Physique Colloques. 32 (C1): C1–462–C1-470. doi:10.1051/jphyscol:19711156. ISSN 0449-1947.
- ^ De Rosier, D. J.; Klug, A. (1968). "Reconstruction of Three Dimensional Structures from Electron Micrographs". Nature. 217 (5124): 130–134. Bibcode:1968Natur.217..130D. doi:10.1038/217130a0. PMID 23610788.
- ^ Blundell, T. L.; Cutfield, J. F.; Cutfield, S. M.; Dodson, E. J.; Dodson, G. G.; Hodgkin, D. C.; Mercola, D. A.; Vijayan, M. (1971). "Atomic Positions in Rhombohedral 2-Zinc Insulin Crystals". Nature. 231 (5304): 506–511. Bibcode:1971Natur.231..506B. doi:10.1038/231506a0. PMID 4932997.
- ^ Schoenborn, Benno P. (1969-10-11). "Neutron Diffraction Analysis of Myoglobin". Nature. 224 (5215): 143–146. Bibcode:1969Natur.224..143S. doi:10.1038/224143a0. ISSN 0028-0836. PMID 5343513.
- ^ Norvell, John C.; Nunes, Anthony C.; Schoenborn, Benno P. (1975-11-07). "Neutron Diffraction Analysis of Myoglobin: Structure of the Carbon Monoxide Derivative". Science. 190 (4214): 568–570. Bibcode:1975Sci...190..568N. doi:10.1126/science.1188354. ISSN 0036-8075. PMID 1188354.
- ^ Crewe, A. V.; Wall, J.; Langmore, J. (1970). "Visibility of Single Atoms". Science. 168 (3937): 1338–1340. Bibcode:1970Sci...168.1338C. doi:10.1126/science.168.3937.1338. ISSN 0036-8075. PMID 17731040.
- ^ "Crystallography: Protein Data Bank". Nature New Biology. 233 (42): 223. 1971. doi:10.1038/newbio233223b0.
- ^ Meyer, Edgar F. (1971). "Interactive Computer Display for the Three Dimensional Study of Macromolecular Structures". Nature. 232 (5308): 255–257. Bibcode:1971Natur.232..255M. doi:10.1038/232255a0. PMID 4937078.
- ^ Rosenbaum, G.; Holmes, K. C.; Witz, J. (1971-04-16). "Synchrotron Radiation as a Source for X-ray Diffraction". Nature. 230 (5294): 434–437. Bibcode:1971Natur.230..434R. doi:10.1038/230434a0. ISSN 0028-0836.
- ^ Holmes, K. C.; Rosenbaum, G. (1998-05-01). "How X-ray Diffraction with Synchrotron Radiation Got Started". Journal of Synchrotron Radiation. 5 (3): 147–153. Bibcode:1998JSynR...5..147H. doi:10.1107/S0909049597018578. ISSN 0909-0495. PMID 15263469.
- ^ Allpress, J. G.; Hewat, E. A.; Moodie, A. F.; Sanders, J. V. (1972). "n -Beam lattice images. I. Experimental and computed images from W 4 Nb 26 O 77". Acta Crystallographica Section A. 28 (6): 528–536. Bibcode:1972AcCrA..28..528A. doi:10.1107/S0567739472001433. ISSN 0567-7394.
- ^ Glazer, A. M. (1972-11-15). "The classification of tilted octahedra in perovskites". Acta Crystallographica Section B. 28 (11): 3384–3392. Bibcode:1972AcCrB..28.3384G. doi:10.1107/S0567740872007976.
- ^ Glazer, A. M. (1975-11-01). "Simple ways of determining perovskite structures". Acta Crystallographica Section A. 31 (6): 756–762. Bibcode:1975AcCrA..31..756G. doi:10.1107/S0567739475001635. ISSN 0567-7394.
- ^ Kim, S. H.; Quigley, G. J.; Suddath, F. L.; McPherson, A.; Sneden, D.; Kim, J. J.; Weinzierl, J.; Rich, Alexander (1973). "Three-Dimensional Structure of Yeast Phenylalanine Transfer RNA: Folding of the Polynucleotide Chain". Science. 179 (4070): 285–288. Bibcode:1973Sci...179..285K. doi:10.1126/science.179.4070.285. PMID 4566654.
- ^ "The Nobel Prize in Chemistry 1973"
- ^ Dorset, Douglas L.; Hauptman, Herbert A. (1976). "Direct phase determination for quasi-kinematical electron diffraction intensity data from organic microcrystals". Ultramicroscopy. 1 (3–4): 195–201. doi:10.1016/0304-3991(76)90034-6. PMID 1028188.
- ^ Delaunay, B. (1933). "Neue Darstellung der geometrischen Kristallographie". Zeitschrift für Kristallographie - Crystalline Materials. 84 (1–6): 109–149. doi:10.1524/zkri.1933.84.1.109.
- ^ Delone, B.N., Dolbilin, N.P., Shtogrin, M.I. and Galiulin, R.V. (1976). A local criterion for regularity of a system of points, Sov. Math. Dokl., 17, 319-322
- ^ "The Nobel Prize in Chemistry 1976"
- ^ Harrison, S. C.; Olson, A. J.; Schutt, C. E.; Winkler, F. K.; Bricogne, G. (1978). "Tomato bushy stunt virus at 2.9 Å resolution". Nature. 276 (5686): 368–373. Bibcode:1978Natur.276..368H. doi:10.1038/276368a0. PMID 19711552.
- ^ Bergerhoff, G.; Hundt, R.; Sievers, R.; Brown, I. D. (1983-05-01). "The inorganic crystal structure data base". Journal of Chemical Information and Computer Sciences. 23 (2): 66–69. doi:10.1021/ci00038a003. ISSN 0095-2338.
- ^ Hellenbrandt, Mariette (2004). "The Inorganic Crystal Structure Database (ICSD)—Present and Future". Crystallography Reviews. 10 (1): 17–22. Bibcode:2004CryRv..10...17H. doi:10.1080/08893110410001664882. ISSN 0889-311X.
- ^ "Gregori Aminoff Prize"
- ^ Marra, W. C.; Eisenberger, P.; Cho, A. Y. (1979-11-01). "X-ray total-external-reflection–Bragg diffraction: A structural study of the GaAs-Al interface". Journal of Applied Physics. 50 (11): 6927–6933. Bibcode:1979JAP....50.6927M. doi:10.1063/1.325845. ISSN 0021-8979.
- ^ Karle, Jerome (1980). "Some developments in anomalous dispersion for the structural investigation of macromolecular systems in biology". International Journal of Quantum Chemistry. 18: 357–367. doi:10.1002/qua.560180734.
- ^ "The Nobel Prize in Chemistry 1982"
- ^ doi:10.1016/0079-6107(83)90026-3.
- ^ Helliwell, John R. (2001). "New opportunities in biological and chemical crystallography". Journal of Synchrotron Radiation. 9 (Pt 1): 1–8. doi:10.1107/S0909049501018465. PMID 11779939.
- ^ Robinson, I. K. (1983). "Direct Determination of the Au(110) Reconstructed Surface by X-Ray Diffraction". Physical Review Letters. 50 (15): 1145–1148. Bibcode:1983PhRvL..50.1145R. doi:10.1103/PhysRevLett.50.1145. ISSN 0031-9007.
- ^ Marks, L. D. (1983-09-12). "Direct Imaging of Carbon-Covered and Clean Gold (110) Surfaces". Physical Review Letters. 51 (11): 1000–1002. Bibcode:1983PhRvL..51.1000M. doi:10.1103/PhysRevLett.51.1000. ISSN 0031-9007.
- ^ Binnig, G.; Rohrer, H.; Gerber, Ch.; Weibel, E. (1982). "Surface Studies by Scanning Tunneling Microscopy". Physical Review Letters. 49 (1): 57–61. Bibcode:1982PhRvL..49...57B. doi:10.1103/PhysRevLett.49.57. ISSN 0031-9007.
- ^ Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W. (1984). "Metallic Phase with Long-Range Orientational Order and No Translational Symmetry". Physical Review Letters. 53 (20): 1951–1953. Bibcode:1984PhRvL..53.1951S. doi:10.1103/PhysRevLett.53.1951.
- ^ Richmond, T. J.; Finch, J. T.; Rushton, B.; Rhodes, D.; Klug, A. (1984). "Structure of the nucleosome core particle at 7 Å resolution". Nature. 311 (5986): 532–537. Bibcode:1984Natur.311..532R. doi:10.1038/311532a0. PMID 6482966.
- ^ "The Nobel Prize in Chemistry 1985"
- ^ Deisenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. (1985). "Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution". Nature. 318 (6047): 618–624. Bibcode:1985Natur.318..618D. doi:10.1038/318618a0. PMID 22439175.
- ^ Takayanagi, K.; Tanishiro, Y.; Takahashi, M.; Takahashi, S. (1985). "Structural analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 3 (3): 1502–1506. Bibcode:1985JVSTA...3.1502T. doi:10.1116/1.573160. ISSN 0734-2101.
- ^ Takayanagi, Kunio; Tanishiro, Yasumasa; Takahashi, Shigeki; Takahashi, Masaetsu (1985). "Structure analysis of Si(111)-7 × 7 reconstructed surface by transmission electron diffraction". Surface Science. 164 (2–3): 367–392. Bibcode:1985SurSc.164..367T. doi:10.1016/0039-6028(85)90753-8. ISSN 0039-6028.
- ^ "The Nobel Prize in Physics 1986"
- ^ "First Ewald Prize"
- ^ Bjorkman, P. J.; Saper, M. A.; Samraoui, B.; Bennett, W. S.; Strominger, J. L.; Wiley, D. C. (1987). "Structure of the human class I histocompatibility antigen, HLA-A2". Nature. 329 (6139): 506–512. Bibcode:1987Natur.329..506B. doi:10.1038/329506a0. PMID 3309677.
- ^ Ploegh, Hidde L. (2002). "Don Craig Wiley (1944–2001)". Nature. 415 (6871): 492. doi:10.1038/415492a. PMID 11823846.
- ^ "The Nobel Prize in Chemistry 1988"
- ^ Desiraju, G.R. (1989). Crystal engineering: the design of organic solids, Elsevier, Amsterdam, 312pp. ISBN 9780444874573
- ^ Weiss, M. S.; Abele, U.; Weckesser, J.; Welte, W.; Schiltz, E.; Schulz, G. E. (1991). "Molecular Architecture and Electrostatic Properties of a Bacterial Porin". Science. 254 (5038): 1627–1630. Bibcode:1991Sci...254.1627W. doi:10.1126/science.1721242. PMID 1721242.
- ^ Hall, S. R.; Allen, F. H.; Brown, I. D. (1991-11-01). "The crystallographic information file (CIF): a new standard archive file for crystallography". Acta Crystallographica Section A. 47 (6): 655–685. Bibcode:1991AcCrA..47..655H. doi:10.1107/S010876739101067X.
- ^ Hall, Sydney R. (1991-05-01). "The STAR file: a new format for electronic data transfer and archiving". Journal of Chemical Information and Computer Sciences. 31 (2): 326–333. doi:10.1021/ci00002a020. ISSN 0095-2338.
- ^ Iijima, Sumio (1991). "Helical microtubules of graphitic carbon". Nature. 354 (6348): 56–58. Bibcode:1991Natur.354...56I. doi:10.1038/354056a0. ISSN 0028-0836.
- ^ "Report of the Executive Committee for 1991". Acta Crystallographica Section A. 48 (6): 922–946. 1992. Bibcode:1992AcCrA..48..922.. doi:10.1107/S0108767392008328.
- ^ Brünger, Axel T.; Kuriyan, John; Karplus, Martin (1987). "Crystallographic R Factor Refinement by Molecular Dynamics". Science. 235 (4787): 458–460. Bibcode:1987Sci...235..458B. doi:10.1126/science.235.4787.458. PMID 17810339.
- ^ Brünger, A. T.; Adams, P. D.; Clore, G. M.; Delano, W. L.; Gros, P.; Grosse-Kunstleve, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; Warren, G. L. (1998). "Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination". Acta Crystallographica Section D. 54 (5): 905–921. Bibcode:1998AcCrD..54..905B. doi:10.1107/s0907444998003254. PMID 9757107.
- ^ Abrahams, Jan Pieter; Leslie, Andrew G. W.; Lutter, René; Walker, John E. (1994). "Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria". Nature. 370 (6491): 621–628. doi:10.1038/370621a0. PMID 8065448.
- ^ Vincent, R.; Midgley, P.A. (1994). "Double conical beam-rocking system for measurement of integrated electron diffraction intensities". Ultramicroscopy. 53 (3): 271–282. doi:10.1016/0304-3991(94)90039-6.
- ^ "The Nobel Prize in Chemistry 1994"
- ^ Pressprich, Mark R.; White, Mark A.; Vekhter, Yanina; Coppens, Philip (1994). "Analysis of a metastable electronic excited state of sodium nitroprusside by X-ray crystallography". Journal of the American Chemical Society. 116 (12): 5233–5238. doi:10.1021/ja00091a030. ISSN 0002-7863.
- ^ Dorset, D.L. (1995). Structural electron crystallography, Plenum, New York, 452pp. ISBN 9781475766219
- ^ "About the Bilbao Crystallographic Server - BCS Wiki". www.cryst.ehu.es. Retrieved 2024-05-06.
- ^ Aroyo, Mois Ilia; Perez-Mato, Juan Manuel; Capillas, Cesar; Kroumova, Eli; Ivantchev, Svetoslav; Madariaga, Gotzon; Kirov, Asen; Wondratschek, Hans (2006-01-01). "Bilbao Crystallographic Server: I. Databases and crystallographic computing programs". Zeitschrift für Kristallographie - Crystalline Materials. 221 (1): 15–27. Bibcode:2006ZK....221...15A. doi:10.1524/zkri.2006.221.1.15. ISSN 2196-7105.
- ^ doi:10.1126/science.277.5332.167
- ^ "The Nobel Prize in Chemistry 1997"
- ^ Niimura, Nobuo; Minezaki, Yoshiaki; Nonaka, Takamasa; Castagna, Jean-Charles; Cipriani, Florent; Høghøj, Peter; Lehmann, Mogens S.; Wilkinson, Clive (1997-11-01). "Neutron Laue diffractometry with an imaging plate provides an effective data collection regime for neutron protein crystallography". Nature Structural & Molecular Biology. 4 (11): 909–914. doi:10.1038/nsb1197-909. ISSN 1545-9993. PMID 9360606.
- ^ Nogales, Eva; Wolf, Sharon G.; Downing, Kenneth H. (1998). "Structure of the αβ tubulin dimer by electron crystallography". Nature. 391 (6663): 199–203. Bibcode:1998Natur.391..199N. doi:10.1038/34465. PMID 9428769.
- ^ Nogales, Eva; Whittaker, Michael; Milligan, Ronald A.; Downing, Kenneth H. (1999). "High-Resolution Model of the Microtubule". Cell. 96 (1): 79–88. doi:10.1016/s0092-8674(00)80961-7. PMID 9989499.
- ^ Gjønnes, J.; Hansen, V.; Berg, B. S.; Runde, P.; Cheng, Y. F.; Gjønnes, K.; Dorset, D. L.; Gilmore, C. J. (1998-05-01). "Structure Model for the Phase AlmFe Derived from Three-Dimensional Electron Diffraction Intensity Data Collected by a Precession Technique. Comparison with Convergent-Beam Diffraction". Acta Crystallographica Section A. 54 (3): 306–319. Bibcode:1998AcCrA..54..306G. doi:10.1107/S0108767397017030.
- ^ Miao, Jianwei; Charalambous, Pambos; Kirz, Janos; Sayre, David (1999). "Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens". Nature. 400 (6742): 342–344. Bibcode:1999Natur.400..342M. doi:10.1038/22498.
- ^ Miao, Jianwei; Ishikawa, Tetsuya; Robinson, Ian K.; Murnane, Margaret M. (2015). "Beyond crystallography: Diffractive imaging using coherent x-ray light sources". Science. 348 (6234): 530–535. Bibcode:2015Sci...348..530M. doi:10.1126/science.aaa1394. PMID 25931551.
- ^ Li, Hailian; Eddaoudi, Mohamed; O'Keeffe, M.; Yaghi, O. M. (1999-11-18). "Design and synthesis of an exceptionally stable and highly porous metal-organic framework". Nature. 402 (6759): 276–279. Bibcode:1999Natur.402..276L. doi:10.1038/46248. hdl:2027.42/62847. ISSN 0028-0836.
- ^ Delgado Friedrichs, Olaf; O'Keeffe, Michael; Yaghi, Omar M. (2003-01-01). "Three-periodic nets and tilings: regular and quasiregular nets". Acta Crystallographica Section A. 59 (1): 22–27. Bibcode:2003AcCrA..59...22D. doi:10.1107/S0108767302018494. hdl:2027.42/115935. ISSN 0108-7673. PMID 12496458.
- ^ Delgado-Friedrichs, Olaf; O'Keeffe, Michael (2003-07-01). "Identification of and symmetry computation for crystal nets". Acta Crystallographica Section A. 59 (4): 351–360. doi:10.1107/S0108767303012017. ISSN 0108-7673. PMID 12832814.
- ^ Delgado-Friedrichs, Olaf; O'Keeffe, Michael; Yaghi, Omar M. (2007). "Taxonomy of periodic nets and the design of materials". Phys. Chem. Chem. Phys. 9 (9): 1035–1043. Bibcode:2007PCCP....9.1035D. doi:10.1039/B615006C. ISSN 1463-9076. PMID 17311144.
- ^ Neutze, Richard; Wouts, Remco; Van Der Spoel, David; Weckert, Edgar; Hajdu, Janos (2000). "Potential for biomolecular imaging with femtosecond X-ray pulses". Nature. 406 (6797): 752–757. Bibcode:2000Natur.406..752N. doi:10.1038/35021099. PMID 10963603.
- ^ Yusupov, Marat M.; Yusupova, Gulnara Zh.; Baucom, Albion; Lieberman, Kate; Earnest, Thomas N.; Cate, J. H. D.; Noller, Harry F. (2001). "Crystal Structure of the Ribosome at 5.5 Å Resolution". Science. 292 (5518): 883–896. Bibcode:2001Sci...292..883Y. doi:10.1126/science.1060089. PMID 11283358.
- ^ Cramer, Patrick; Bushnell, David A.; Kornberg, Roger D. (2001). "Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution". Science. 292 (5523): 1863–1876. Bibcode:2001Sci...292.1863C. doi:10.1126/science.1059493. hdl:11858/00-001M-0000-0015-8729-F. PMID 11313498.
- ^ Gnatt, Averell L.; Cramer, Patrick; Fu, Jianhua; Bushnell, David A.; Kornberg, Roger D. (2001). "Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution". Science. 292 (5523): 1876–1882. Bibcode:2001Sci...292.1876G. doi:10.1126/science.1059495. hdl:11858/00-001M-0000-0015-8723-C. PMID 11313499.
- ^ Ravelli, Raimond B.G.; Leiros, Hanna-Kirsti Schrøder; Pan, Baocheng; Caffrey, Martin; McSweeney, Sean (2003). "Specific Radiation Damage Can Be Used to Solve Macromolecular Crystal Structures". Structure. 11 (2): 217–224. doi:10.1016/S0969-2126(03)00006-6. PMID 12575941.
- ^ Ayvazyan, V.; Baboi, N.; Bähr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bohnet, I.; Bolzmann, A.; Brinkmann, R.; Brovko, O. I.; Carneiro, J. P.; Casalbuoni, S.; Castellano, M.; Castro, P.; Catani, L. (2006). "First operation of a free-electron laser generating GW power radiation at 32 nm wavelength". The European Physical Journal D. 37 (2): 297–303. Bibcode:2006EPJD...37..297A. doi:10.1140/epjd/e2005-00308-1. ISSN 1434-6060.
- ^ Kolb, U.; Gorelik, T.; Kübel, C.; Otten, M.T.; Hubert, D. (2007). "Towards automated diffraction tomography: Part I—Data acquisition". Ultramicroscopy. 107 (6–7): 507–513. doi:10.1016/j.ultramic.2006.10.007. PMID 17234347.
- ^ Kolb, U.; Gorelik, T.; Otten, M.T. (2008). "Towards automated diffraction tomography. Part II—Cell parameter determination". Ultramicroscopy. 108 (8): 763–772. doi:10.1016/j.ultramic.2007.12.002. PMID 18282662.
- ^ Kolb, U.; Mugnaioli, E.; Gorelik, T. E. (2011). "Automated electron diffraction tomography – a new tool for nano crystal structure analysis". Crystal Research and Technology. 46 (6): 542–554. Bibcode:2011CryRT..46..542K. doi:10.1002/crat.201100036. ISSN 0232-1300.
- ^ Rasmussen, Søren G. F.; Choi, Hee-Jung; Rosenbaum, Daniel M.; Kobilka, Tong Sun; Thian, Foon Sun; Edwards, Patricia C.; Burghammer, Manfred; Ratnala, Venkata R. P.; Sanishvili, Ruslan; Fischetti, Robert F.; Schertler, Gebhard F. X.; Weis, William I.; Kobilka, Brian K. (2007). "Crystal structure of the human β2 adrenergic G-protein-coupled receptor". Nature. 450 (7168): 383–387. doi:10.1038/nature06325. PMID 17952055.
- ^ Cherezov, Vadim; Rosenbaum, Daniel M.; Hanson, Michael A.; Rasmussen, Søren G. F.; Thian, Foon Sun; Kobilka, Tong Sun; Choi, Hee-Jung; Kuhn, Peter; Weis, William I.; Kobilka, Brian K.; Stevens, Raymond C. (2007). "High-Resolution Crystal Structure of an Engineered Human β 2 -Adrenergic G Protein–Coupled Receptor". Science. 318 (5854): 1258–1265. Bibcode:2007Sci...318.1258C. doi:10.1126/science.1150577. PMC 2583103. PMID 17962520.
- ^ Emma, P. (2009). "First Lasing of the LCLS X-Ray FEL at 1.5 Å". Proceedings of the 2009 Particle Accelerator Conference. S2CID 14531844.
- ^ Emma, P.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Fisher, A.; Frisch, J. (2010-08-01). "First lasing and operation of an ångstrom-wavelength free-electron laser". Nature Photonics. 4 (9): 641–647. Bibcode:2010NaPho...4..641E. doi:10.1038/nphoton.2010.176. ISSN 1749-4885.
- ^ Bindi, Luca; Steinhardt, Paul J.; Yao, Nan; Lu, Peter J. (2009-06-05). "Natural Quasicrystals". Science. 324 (5932): 1306–1309. Bibcode:2009Sci...324.1306B. doi:10.1126/science.1170827. ISSN 0036-8075. PMID 19498165.
- ^ "The Nobel Prize in Chemistry 2009"
- ^ Dolomanov, Oleg V.; Bourhis, Luc J.; Gildea, Richard J.; Howard, Judith A. K.; Puschmann, Horst (2009). "OLEX2: A complete structure solution, refinement and analysis program". Journal of Applied Crystallography. 42 (2): 339–341. doi:10.1107/S0021889808042726.
- ^ Van Aert, Sandra; Batenburg, Kees J.; Rossell, Marta D.; Erni, Rolf; Van Tendeloo, Gustaaf (2011-02-02). "Three-dimensional atomic imaging of crystalline nanoparticles". Nature. 470 (7334): 374–377. Bibcode:2011Natur.470..374V. doi:10.1038/nature09741. ISSN 0028-0836. PMID 21289625. S2CID 4310850.
- ^ "The Nobel Prize in Chemistry 2011"
- ^ Chapman, Henry N.; et al. (2011). "Femtosecond X-ray protein nanocrystallography". Nature. 470 (7332): 73–77. Bibcode:2011Natur.470...73C. doi:10.1038/nature09750. PMC 3429598. PMID 21293373.
- ^ Scott, M. C.; Chen, Chien-Chun; Mecklenburg, Matthew; Zhu, Chun; Xu, Rui; Ercius, Peter; Dahmen, Ulrich; Regan, B. C.; Miao, Jianwei (2012). "Electron tomography at 2.4-ångström resolution". Nature. 483 (7390): 444–447. Bibcode:2012Natur.483..444S. doi:10.1038/nature10934. PMID 22437612.
- ^ Miao, Jianwei; Ercius, Peter; Billinge, Simon J. L. (2016). "Atomic electron tomography: 3D structures without crystals". Science. 353 (6306). doi:10.1126/science.aaf2157. PMID 27708010.
- ^ Shi, Dan; Nannenga, Brent L; Iadanza, Matthew G; Gonen, Tamir (2013-11-19). "Three-dimensional electron crystallography of protein microcrystals". eLife. 2: e01345. doi:10.7554/eLife.01345. ISSN 2050-084X. PMC 3831942. PMID 24252878.
- ^ Giacovazzo, Carmelo (2014). Phasing in crystallography: a modern perspective. IUCr texts on crystallography. Oxford: Oxford university press. ISBN 978-0-19-968699-5.
- ^ "The International Year of Crystallography 2014".
- ^ Palatinus, L.; Brázda, P.; Boullay, P.; Perez, O.; Klementová, M.; Petit, S.; Eigner, V.; Zaarour, M.; Mintova, S. (2017-01-13). "Hydrogen positions in single nanocrystals revealed by electron diffraction". Science. 355 (6321): 166–169. Bibcode:2017Sci...355..166P. doi:10.1126/science.aak9652. ISSN 0036-8075. PMID 28082587.
- ^ McCusker, Lynne B. (2017-01-13). "Electron diffraction and the hydrogen atom". Science. 355 (6321): 136. Bibcode:2017Sci...355..136M. doi:10.1126/science.aal4570. ISSN 0036-8075. PMID 28082549.
- ^ "The Nobel Prize in Chemistry 2017"
- ^ "A million thanks | CCDC". www.ccdc.cam.ac.uk. Retrieved 2024-03-27.
- ^ Taylor, Robin; Wood, Peter A. (2019-08-28). "A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts". Chemical Reviews. 119 (16): 9427–9477. doi:10.1021/acs.chemrev.9b00155. ISSN 0009-2665. PMID 31244003.
- ^ Herzik Jr, Mark A. (2020-11-05). "Cryo-electron microscopy reaches atomic resolution". Nature. 587 (7832): 39–40. Bibcode:2020Natur.587...39H. doi:10.1038/d41586-020-02924-y. ISSN 0028-0836. PMID 33087866.
- ^ Yip, Ka Man; Fischer, Niels; Paknia, Elham; Chari, Ashwin; Stark, Holger (2020-11-05). "Atomic-resolution protein structure determination by cryo-EM". Nature. 587 (7832): 157–161. Bibcode:2020Natur.587..157Y. doi:10.1038/s41586-020-2833-4. ISSN 0028-0836. PMID 33087927.
- ^ Nakane, Takanori; Kotecha, Abhay; Sente, Andrija; McMullan, Greg; Masiulis, Simonas; Brown, Patricia M. G. E.; Grigoras, Ioana T.; Malinauskaite, Lina; Malinauskas, Tomas; Miehling, Jonas; Uchański, Tomasz; Yu, Lingbo; Karia, Dimple; Pechnikova, Evgeniya V.; de Jong, Erwin (2020-11-05). "Single-particle cryo-EM at atomic resolution". Nature. 587 (7832): 152–156. Bibcode:2020Natur.587..152N. doi:10.1038/s41586-020-2829-0. ISSN 0028-0836. PMC 7611073. PMID 33087931.
- ^ Libbrecht, Kenneth G. (2021-12-09). "Snow Crystals". arXiv:1910.06389 [cond-mat.mtrl-sci].
- ^ Aubrey, Dan (2022-01-12). "Off the Presses: Kenneth Libbrecht's 'Snow Crystals'". Community News. Retrieved 2024-03-26.
- ^ Dubrovinsky, Leonid; Khandarkhaeva, Saiana; Fedotenko, Timofey; Laniel, Dominique; Bykov, Maxim; Giacobbe, Carlotta; Lawrence Bright, Eleanor; Sedmak, Pavel; Chariton, Stella; Prakapenka, Vitali; Ponomareva, Alena V.; Smirnova, Ekaterina A.; Belov, Maxim P.; Tasnádi, Ferenc; Shulumba, Nina (2022-05-12). "Materials synthesis at terapascal static pressures". Nature. 605 (7909): 274–278. Bibcode:2022Natur.605..274D. doi:10.1038/s41586-022-04550-2. ISSN 0028-0836. PMC 9095484. PMID 35546194.
- ^ Larsen, Anders S.; Rekis, Toms; Madsen, Anders Ø. (2024-08-02). "PhAI: A deep-learning approach to solve the crystallographic phase problem". Science. 385 (6708): 522–528. doi:10.1126/science.adn2777. ISSN 0036-8075.
Further reading
[edit]Crystallography before 20th century
[edit]- Whitlock, H. P. (1934). "A century of progress in crystallography" (PDF). The American Mineralogist. 19: 93–100.
- Burke, John G. (1966), Origins of the science of crystals, University of California Press. LCCN 66--13584
- Lima-de-Faria, José (ed.) (1990), Historical atlas of crystallography, Springer Netherlands
- Kubbinga, Henk (2012). "Crystallography from Haüy to Laue: Controversies on the molecular and atomistic nature of solids". Zeitschrift für Kristallographie. 227 (1): 1–26. Bibcode:2012ZK....227....1K. doi:10.1524/zkri.2012.1459.
- Molčanov, Krešimir; Stilinović, Vladimir (2014-01-13). "Chemical Crystallography before X-ray Diffraction". Angewandte Chemie International Edition. 53 (3): 638–652. doi:10.1002/anie.201301319. ISSN 1433-7851. PMID 24065378.
- "Bernard MAITTE René-Just Haüy (1743-1822) et la naissance de la cristallographie*". annales.org. Retrieved 2024-05-15.
Crystallography in the 20th century and beyond
[edit]- "100 Years of X-ray Crystallography". Chemical & Engineering News. Retrieved 2024-05-14.
- Milestones in crystallography, Nature, August 2014
- Schwarzenbach, Dieter (2012-01-01). "The success story of crystallography". Acta Crystallographica Section A. 68 (1): 57–67. Bibcode:2012AcCrA..68...57S. doi:10.1107/S0108767311030303. ISSN 0108-7673. PMID 22186283.
- "Timelines of Crystallography". iycr2014.org. Retrieved 2024-08-19.
- McMahon, Malcolm I. (2011), Rissanen, Kari (ed.), "High-Pressure Crystallography", Advanced X-Ray Crystallography, Topics in Current Chemistry, vol. 315, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 69–109, doi:10.1007/128_2011_132, ISBN 978-3-642-27406-0, PMID 21567312, retrieved 2024-05-22
- Baur, Werner H. (2014-04-03). "One hundred years of inorganic crystal chemistry – a personal view". Crystallography Reviews. 20 (2): 64–116. Bibcode:2014CryRv..20...64B. doi:10.1080/0889311X.2013.879648. ISSN 0889-311X.
- Pinheiro, Carlos Basílio; Abakumov, Artem M. (2015-01-01). "Superspace crystallography: a key to the chemistry and properties". IUCrJ. 2 (1): 137–154. Bibcode:2015IUCrJ...2..137P. doi:10.1107/S2052252514023550. ISSN 2052-2525. PMC 4285887. PMID 25610634.
- Kopský, Vojtěch (2015-02-02). "Crystallography and Magnetic Phenomena". Symmetry. 7 (1): 125–145. Bibcode:2015Symm....7..125K. doi:10.3390/sym7010125. ISSN 2073-8994.
- Gratias, Denis; Quiquandon, Marianne (2019-05-23). "Discovery of quasicrystals: The early days". Comptes Rendus. Physique. 20 (7–8): 803–816. Bibcode:2019CRPhy..20..803G. doi:10.1016/j.crhy.2019.05.009. ISSN 1878-1535.
History of X-ray crystallography
[edit]- Ewald, P. P. (ed.) (1962), 50 Years of x-ray diffraction, IUCR, Oosthoek
- Arndt, U. W. (2001-09-22). "Instrumentation in X-ray crystallography: Past, present and future". Notes and Records of the Royal Society of London. 55 (3): 457–472. doi:10.1098/rsnr.2001.0157. ISSN 0035-9149.
- Watkin, David J. (2010). "Chemical crystallography–science, technology or a black art". Crystallography Reviews. 16 (3): 197–230. Bibcode:2010CryRv..16..197W. doi:10.1080/08893110903483246. ISSN 0889-311X.
- Authier, André (2013), Early days of x-ray crystallography, Oxford Univ. Press. ISBN 9780198754053
- Etter, Martin; Dinnebier, Robert E. (2014). "A Century of Powder Diffraction: a Brief History". Zeitschrift für anorganische und allgemeine Chemie. 640 (15): 3015–3028. doi:10.1002/zaac.201400526. ISSN 0044-2313.
- Mingos, D. Michael P.; Raithby, Paul R., eds. (2020). 21st Century Challenges in Chemical Crystallography I: History and Technical Developments. Structure and Bonding. Vol. 185. Cham: Springer International Publishing. doi:10.1007/978-3-030-64743-8. ISBN 978-3-030-64742-1.
History of electron crystallography
[edit]- Thomson, George (1968). "The early history of electron diffraction". Contemporary Physics. 9 (1): 1–15. Bibcode:1968ConPh...9....1T. doi:10.1080/00107516808204390. ISSN 0010-7514.
- Tong, S.Y (1994). "Electron-diffraction for surface studies — the first 30 years". Surface Science. 299–300: 358–374. Bibcode:1994SurSc.299..358T. doi:10.1016/0039-6028(94)90667-X.
- Dorset, D. L. (1996-10-01). "Electron crystallography". Acta Crystallographica Section B. 52 (5): 753–769. Bibcode:1996AcCrB..52..753D. doi:10.1107/S0108768196005599. ISSN 0108-7681. PMID 8900031.
- Saha, Ambarneil; Nia, Shervin S.; Rodríguez, José A. (2022-09-14). "Electron Diffraction of 3D Molecular Crystals". Chemical Reviews. 122 (17): 13883–13914. doi:10.1021/acs.chemrev.1c00879. ISSN 0009-2665. PMC 9479085. PMID 35970513.
History of neutron crystallography
[edit]- Schoenborn, B. P.; Nunes, A. C. (1972). "Neutron Scattering". Annual Review of Biophysics and Bioengineering. 1 (1): 529–552. doi:10.1146/annurev.bb.01.060172.002525. ISSN 0084-6589. PMID 4567759.
- Bacon, G. E., ed. (1986). Fifty years of neutron diffraction: the advent of neutron scattering. Bristol: A. Hilger, published with the assistance of the International Union of Crystallography. ISBN 978-0-85274-587-8.
- Harrison, R. J. (2006-01-01). "Neutron Diffraction of Magnetic Materials". Reviews in Mineralogy and Geochemistry. 63 (1): 113–143. Bibcode:2006RvMG...63..113H. doi:10.2138/rmg.2006.63.6. ISSN 1529-6466.
- Blakeley, M.P. (2009). "Neutron macromolecular crystallography". Crystallography Reviews. 15 (3): 157–218. Bibcode:2009CryRv..15..157B. doi:10.1080/08893110902965003. ISSN 0889-311X.
- Mason, T. E.; Gawne, T. J.; Nagler, S. E.; Nestor, M. B.; Carpenter, J. M. (2013-01-01). "The early development of neutron diffraction: science in the wings of the Manhattan Project". Acta Crystallographica Section A. 69 (1): 37–44. doi:10.1107/S0108767312036021. ISSN 0108-7673. PMC 3526866. PMID 23250059.
History of NMR crystallography
[edit]- Andrew, E.R.; Szczesniak, E. (1995). "A historical account of NMR in the solid state". Progress in Nuclear Magnetic Resonance Spectroscopy. 28 (1): 11–36. Bibcode:1995PNMRS..28...11A. doi:10.1016/0079-6565(95)01018-1.
- Harris, Robin K. (2008-12-15), "Crystallography and NMR: An Overview", in Harris, Robin K. (ed.), Encyclopedia of Magnetic Resonance, Chichester, UK: John Wiley & Sons, Ltd, doi:10.1002/9780470034590.emrstm1007, ISBN 978-0-470-03459-0, retrieved 2024-05-17
History of structure determination
[edit]- Beevers, Ca; Lipson, H (1985). "A Brief History of Fourier Methods in Crystal-structure Determination". Australian Journal of Physics. 38 (3): 263. Bibcode:1985AuJPh..38..263B. doi:10.1071/PH850263. ISSN 0004-9506.
- Hauptman, Herbert (1997-10-01). "Phasing methods for protein crystallography". Current Opinion in Structural Biology. 7 (5): 672–680. doi:10.1016/S0959-440X(97)80077-2. ISSN 0959-440X. PMID 9345626.
- Hendrickson, Wayne A. (2013). "Evolution of diffraction methods for solving crystal structures". Acta Crystallographica Section A. 69 (1): 51–59. Bibcode:2013AcCrA..69...51H. doi:10.1107/S0108767312050453. ISSN 0108-7673. PMID 23250061.
- Agirre, Jon; Dodson, Eleanor (2018). "Forty years of collaborative computational crystallography". Protein Science. 27 (1): 202–206. doi:10.1002/pro.3298. ISSN 0961-8368. PMC 5734308. PMID 28901632.
- Hendrickson, Wayne A. (2023-09-01). "Facing the phase problem". IUCrJ. 10 (5): 521–543. Bibcode:2023IUCrJ..10..521H. doi:10.1107/S2052252523006449. ISSN 2052-2525. PMC 10478523.