Movimiento medio diario , la enciclopedia libre

En astronomía el Movimiento medio diario que se representa con la letra, n, es la velocidad angular de un astro en una órbita elíptica, medido en grados o radianes por día.

Se determina con la fórmula:

n = 2 × π / P

donde P es el período en días solares medios y n está en radianes por día. También n=360°/P y entonces n se expresa en grados por día.

Por la tercera ley de Kepler:

P = 2 × π × a3/2 / (G × (M + m))1/2

donde G es la Constante de gravitación universal, cuyo valor es 6,67 × 10-11 en el sistema de unidades MKS; M es la masa del objeto alrededor del cual orbita el astro de masa m; a es el semieje mayor de la órbita elíptica.

Simplificaciones en órbitas en torno al sol

[editar]

Para planetas del Sistema Solar podemos utilizar unas unidades especiales y que son el tiempo en años, el semieje mayor en UA y las masas de los cuerpos en masas solares. En este sistema y para los planetas, si hacemos la aproximación de que la masa del objeto que orbita es despreciable en comparación con la del Sol (M = 1)se cumple:

P=a3/2

En vez de P en años, lo podemos expresar en días si multipliamos por P0= 365,2422 que es la duración del año en la Tierra.

P= P0 × a3/2

de modo que el movimiento medio de cualquier planeta, cometa o asteroide vale:

n = k/a3/2

donde k es la constante de Gauss, o el movimiento medio diario de la Tierra cuyo valor es 0,01720209895 radianes/día o 0,9856076686 grados/día; El movimiento medio de un planeta es el mismo que tendría un planeta ficcticio que girase con velocidad angular uniforme por una órbita circular y con un radio igual al semieje mayor de la elipse.

Ejemplo

[editar]

El cometa Halley (1P/=1986 U1) tiene un semieje mayor:

a = 17,94163127 UA (época 19/2/1986)

Por lo tanto su movimiento medio diario es:

n = 0,9856076686/17,941631273/2 = 0,0129614°/día = 2,263541968—04 rad./día

El período de revolución es igual a 27.758,2010709 días.