Rango intercuartílico , la enciclopedia libre

En estadística descriptiva, se le llama rango intercuartílico o rango intercuartil, a la diferencia entre el tercer y el primer cuartil de una distribución. Es una medida de la dispersión estadística.

A diferencia del rango, se trata de un estadístico robusto.

Definición

[editar]

El rango intercuartílico es una medida de variabilidad adecuada cuando la medida de posición central empleada ha sido la mediana. Se define como la diferencia entre el tercer cuartil (Q3) y el primer cuartil (Q1), es decir: RQ = Q3 - Q1. A la mitad del rango intercuartil se le conoce como desviación cuartil (DQ), es afectada muy poco por cuentas extremas. Esto lo hace una buena medida de dispersión para distribuciones sesgadas: DQ = RQ/2= (Q3 - Q1)/2.

Se usa para construir los diagramas de caja y bigote (box plots) que sirven para visualizar la variabilidad de una variable y comparar distribuciones de la misma variable; además de ubicar valores extremos.[1]

Referencias

[editar]

Véase también

[editar]