قانون هوک در فیزیک، مکانیک و دانش مواد کشسانی (الاستیسیته)، تقریبی است نشان دهندهٔ آن که تغییر طول یک ماده با بار وارد بر آن رابطهٔ خطی دارد. بسیاری از مواد تا زمانی که نیرو از حد کشسانی آنها کمتر باشد با تقریب خوبی از این قانون پیروی میکنند. انحراف از قانون هوک با افزایش میزان تغییرشکل زیاد میشود بهطوریکه در تغییرشکلهای زیاد، با خارج شدن ماده از دامنه کشسان خطی، این قانون کاربرد خود را از دست میدهد. موادی که قانون هوک برای آنها تقریب مناسبی باشد، مواد کشسان خطی یا «مواد هوکی» نام دارند. ساده شدهٔ قانون هوک بیان میدارد که کرنش با تنش رابطهٔ مستقیم دارد:
که در آن:
x: جابجایی فنر فشرده یا کشیدهشده از نقطهٔ تعادل آن است. یکای x در دستگاه SI متر است.
F: نیروی بازگردانندهٔ وارده از سوی فنر که با جابجایی انتهای فنر مقاومت میکند (نیروی مقاومت فنر) است؛ در دستگاه SI یکای آن نیوتن N یا کیلوگرممتر بر مجذور ثانیه Kg m s-۲ است.
k: ثابت فنر است که در دستگاه SI یکای آن نیوتن بر متر یا کیلوگرم بر مجذور ثانیه است.
وقتی چنین رابطهای برای مادهای برقرار باشد، میتوان گفت که آن ماده رفتار خطی دارد و اگر نتایج آن را بر روی یک نمودار نمایش دهیم میبینیم که نتایج به صورت یک خط راست بدست آمدهاند. علامت منفی در سمت راست رابطهٔ بالا به این دلیل است که نیروی بازگردانندهٔ فنر و جابجایی فنر همواره در جهت مخالف یکدیگر عمل میکنند. مثلاً اگر فنر به سمت راست افزایش طول پیدا کند نیروی بازگردانندهٔ آن در سوی مخالف و به سمت چپ یعنی در جهت جمع شدن فنر وارد میشود.
قانون هوک پس از قرن ۱۷ میلادی به نام فیزیکدان بریتانیایی رابرت هوک نامگذاری شد. وی ابتدا در سال ۱۶۶۰ با عنوان مقلوب لاتین ارائه کرد[۳] و در سال ۱۶۷۸ راه حلش را با عنوان رمزی Ut tensio, sic vis به معنی هرچقدرجابجایی همانقدر نیرو، منتشر کرد.
موادی که پس از وارد شدن یک نیرو و تغییر شکل به سرعت به حالت اولیهٔ خود بازمیگردند و مولکولها و اتمهای آنها نیز به حالت اولیه و تعادل پایدار پیشین خود بازمیگردند، معمولاً از قانون هوک پیروی میکنند.
یک میله از جنس یک مادهٔ کشسان را میتوان مانند یک فنر خطی در نظر گرفت، طول میله L و سطح مقطع آن A است. افزایش طول میله (کرنش) آن به صورت خطی با تنش کششیσ وارد بر آن نسبت خطی ثابت دارد. وارون این نسبت خطی را مدول الاستیسیتهE مینامند؛ بنابراین:
یا
مواد تا زمانی که در بازهٔ کشسانی خود باشند (تنشهای وارد بر آنها کمتر از تنش تسلیم باشد) از قانون هوک پیروی میکنند. در مقابل موادی مانند کائوچو را مواد غیرهوکی مینامند در این مواد ویژگی کشسانی ماده به تنش وارد بر آن وابستهاست و به دمای محیط و نرخ بارگذاری نیز حساس است.
در تغییرشکلهای کوچک زاویهای، رابطه هوک به صورت زیر بیان میشود:
که در آن، τتنش برشی اعمال شده بر ماده، γ کرنش زاویهای (برابر تانژانت زاویه پیچش)، و G مدول برشی ماده تحت تنش است. رابطه کرنش زاویهای با زاویه پیچش (θ) به صورت زیر است:[۴]
γ = tan(θ) ≈ θ
از قانون هوک در ترازوهای فنری، تحلیل تنش و مدل سازی مواد و … استفاده میشود.
میتوان از معادلهٔ فنر به عنوان پر کاربردترین بیان قانون هوک یاد کرد. قانون هوک برای فنر بیان میدارد که نسبت نیروی بازگردانندهٔ وارده از سوی فنر به میزان تغییر شکل فنر برابر است با مقدار ثابتی معروف به ثابت فنر یا k با یکای نیرو بر طول:
علامت منفی در رابطهٔ بالا به این دلیل است که بردارهای نیرو و جابجایی در خلاف جهت یکدیگر بر این سامانه اثر میکنند. نیروی بازگردانندهٔ فنر در برابر هر نوع تغییر شکل مقاومت میکند و تلاش میکند تا فنر را دوباره به حالت تعادل پیشین خود بازگرداند. کارمایه یا انرژی پتانسیل ذخیره شده در فنر برابر است با:
که برابر است با انرژی لازم برای اینکه کمکم فنر جمع شود یا انتگرال نیرو روی جابجایی. یادآوری میشود که مقدار انرژی پتانسیل فنر همواره بزرگتر از صفر است.
انرژی ذخیره شده را میتوان به صورت یک نمودار سهمی روی محور U-x نمایش داد. وقتی که فنر در جهت محور x کشیده یا فشرده میشود (در هر دو حالت) انرژی پتانسیل آن افزایش می یابد. فنر همواره تلاش میکند تا با بازگرداندن خود به حالت تعادل انرژی پتانسیلش را آزاد کند (از دست بدهد) درست مانند توپی که از یک بلندی رها میشود و انرژی پتانسیل گرانشی خود را از دست میدهد (میکاهد).
اگر جرم m به انتهای یک فنر بسته شود و پس از کشیده شدن رها گردد، در حالت آرمانی که اصطکاک نداشته باشیم و جرم فنر نسبت به جرم m ناچیز باشد، فنر و جرم همواره نوسان خواهند کرد که سرعت زاویهای آن برابر خواهد بود با:
بسامد آن برابر است با:
تذکر: رابطههای بالا با این فرض گفته شد که فنر بیش از بازهٔ کشسان خود کشیده نشدهباشد که در غیر این صورت فنر دچار تغییر شکل همیشگی (بدون بازگشت) میشود.
برای بدست آوردن ثابت فنر هم-ارز دو فنر سری ، باید از روش هوشمندانه تری نسبت به حالت دو فنر موازی استفاده کرد.
اگر فرض کنیم میزان تغییر شکل در فنر همارز (که برابر است با موقعیت مکانی جرم انتهای فنرها) برابر با x۲ باشد، برای بدست آوردن نیاز داریم تا به رابطهای مانند معادلهٔ زیر برسیم:
همچنین فرض میکنیم که نقطهٔ پیوند میان دو فنر موقعیت x۲ را داشته باشد؛ بنابراین نیروی وارده بر جرم انتهایی برابر است با:
همچنین نیروی وارده بر محل پیوند میان دو فنر برابر خواهد بود با:
وقتی که جرم هول داده میشود، فنرها فشرده میشوند، حال اگر جرم را رها کنیم کل سامانه اجازه پیدا میکند تا به حالت تعادل بازگردد وقتی سامانه به سمت تعادل یا نیروی صفر بازمیگردد به این معنی است که مجموع نیروهای فنرها برابر با صفر میشود. پس میشود، برای بدست آوردن مینویسیم:
پس:
مقدار بدست آمدهٔ را در رابطهٔ (۱) جایگزین میکنیم:
به این ترتیب نیروی وارده به جرم بدست میآید:
میتوان گفت که عبارت داخل پرانتز ثابت فنر همارز این سامانهاست:
عبارت بالا را بازنویسی میکنیم:
ثابت فنر همارز (موازی)
هر دوی فنرها به جرم موجود در سامانه بسته شدهاند پس میزان تغییر شکل هر دو فنر با هم برابر است. نیروی وارده به جرم برابر خواهد بود با:
پس از فاکتورگیری خواهیم داشت:
میتوان نتیجه گرفت که عبارت داخل پرانتز همان ثابت فنر همارز این سامانهاست:
طول فشردگی
وقتی که دو فنر به صورت سری بسته شده باشند، اندازهٔ نیروی هر دو فنر با هم برابر است:
x1 میزان تغییر طول فنر یک، و x2 - x1 میزان تغییر طول فنر دو است. تعریف میکنیم:
عبارتهای بالا را جایگزین میکنید:
انرژی ذخیره شده
نسبت انرژی ذخیره شده در دو فنر سری عبارت است از:
پیش تر رابطهٔ میان a1 و a2 را بدست آورده بودیم که در رابطهٔ بالا جایگزین میکنیم:
برای فنرهای موازی:
چون در فنرهای موازی، میزان فشردگی هر دو فنر با هم برابر است، x از دو طرف تساوی ساده میشود:
وقتی که با تنشهای سه بعدی کار میکنیم، از تانسور چهارتایی به شکل که دارای ۸۱ ضریب الاستیسیتهاست باید استفاده کرد تا بتوان میان تانسور تنش یا (σij) و تانسور کرنش یا () ارتباط برقرار کرد.
اگر عبارت بالا را به همراه جزئیاتش بنویسیم به شکل زیر خواهد بود (با استفاده از قرارداد جمعزنی اینشتین):
تانسور را تانسور سفتی یا تانسور الاستیسیته مینامند. به دلیل تقارن تانسورهای تنش و کرنش، در تانسور سفتی تنها ۲۱ ضریب از یکدیگر مستقلاند. از آنجایی که یکای تنش همان یکای فشار است و کرنش، یکایی ندارد، پس یکای تمامی درایههای تانسور سفتی ، همان یکای تنش خواهد بود.
عبارت عمومی قانون هوک را میتوان شبیه رابطهٔ میان تنش و کرنش نوشت:
تذکر: برای آگاهی بیشتر دربارهٔ سیالات، مقالهٔ گرانروی را نگاه کنید.
ویژگی مواد همسان این است که آنها در جهتهای مختلف ویژگیهای یکسان از خود نشان میدهند؛ بنابراین معادلات فیزیکی که برای مواد همسان نوشته میشود باید مستقل از دستگاه مختصات باشد. تانسور کرنش یک تانسور متقارن است. میتوان تانسور کرنش را بوسیلهٔ اثر آن و دلتای کرونکر به شکل زیر نمایش داد:[۵]: Ch. 10
با استفاده از جبر تانسورها خواهیم داشت:
که تانسور یکهٔ درجه دو است. در سمت راست تساوی، عبارت (به انگلیسی: volumetric strain tensor) به معنی تانسور کرنش حجمی است و عبارت به معنی تانسور اعوجاج یا تانسور کرنش برشی یا تانسور انحرافی (به انگلیسی: deviatoric strain tensor) است.
عمومیترین شکل قانون هوک برای مواد همسان به صورت ترکیب خطی این تانسورها نوشته میشود:
تقارن تانسور تنش کوشی () و قانون هوک در حالت کلی () میرساند که خواهد بود. به روش مشابه، از تقارن تانسور کرنشهای بسیار کوچک میتوان نتیجه گرفت که . این تقارنها را تقارن خردِ[۸]تانسور سفتی مینامند ().
آنگاه که گرادیان تغییرشکلها و تنش کوشی با هم کار کنند، رابطهٔ تنش - کرنش را میتوان از تابع چگالی انرژی تغییر شکلها () بدست آورد:
از دلخواه بودن ترتیب دیفرانسیلها میتوان نتیجه گرفت که که این را تقارن بزرگ[۹] تانسور سفتی مینامند. تقارن خُرد و تقارن بزرگ تانسور سفتی نتیجه میدهد که تانسور سفتی تنها ۲۱ درایهٔ مستقل (جزء سازندهٔ مستقل) دارد.
معمول است که قانون هوک برای مواد نامسان را به صورت ماتریسی نیز توضیح دهند که آن را مفهوم وویت نیز مینامند. برای این کار باید از تقارن تانسورهای تنش و کرنش استفاده کرد و آنها را به صورت یک بردار شش بُعدی در یک دستگاه مختصات متعامد[۱۰] () به صورت زیر توضیح داد:
آنگاه تانسور سفتی () را میتوان چنین نوشت:
قانون هوک به گونهٔ زیر نوشته میشود:
به روش مشابه تانسور () انطباق را چنین میتوان نوشت:
اگر یک مادهٔ کشسان خطی (الاستکیک خطی) را از حالت مرجع به حالتی دیگر دوران دهیم، آن ماده در برابر دوران متقارن باقی میماند اگر اجزای تانسور سفتی را نیز باید با توجه به حالت جدید دوران داد[۱۱]
که در آن اجزای یک ماتریس متعامد دوران به نام است. رابطهٔ مشابه برای وارونها نیز وجود دارد.
در جبر ماتریسها داریم که اگر ماتریس تغییر یافته (به صورت وارون یا دوران) خود وابسته به ماتریسهای دیگر باشد، اجزای آن خود دچار تغییر شکل میشوند. برای نمونه اگر:
آنگاه
همچنین اگر ماده نسبت به ماتریس تغییر شکل متقارن باشد، آنگاه:
مواد راستمحور (به انگلیسی: Orthotropic materials) دارای سه صفحهٔ راست تقارناند. اگر بردارهای پایهٔ () بردارهای نرمال صفحهٔ تقارن باشند، بنابراین رابطههای تغییر دستگاه مختصات به صورت زیر وارد میشوند:
تغییر شکلهای خطی مواد کشسان را میتوان به مفهوم فرایند بیدررو نزدیک دانست. با فرض این وضعیت و برای فرایندهای شِبهِ ایستا، قانون اول ترمودینامیک برای یک حجم تغییر شکل یافته به صورت زیر گفته میشود:
که در آن انرژی درونی افزایش یافته و کار انجام شده بوسیلهٔ نیروی خارجی است. اجزای کار را میتوان به صورت زیر از هم جدا کرد:
که در آن کار انجام شده بوسیلهٔ نیروی سطحی است و کار انجام شده بوسیلهٔ نیروی حجمی است. اگر تغییرات میدان جابجایی در حجم باشد؛ در نتیجه دو بخش کار خارجی به صورت زیر توضیح داده میشود:
که در آن بردار نیروی سطحی و بردار نیروی حجمی و نشان دهندهٔ یک حجم و نشانهٔ سطح آن است. حال از رابطهٔ تنش (که در آن بردار عمود بر سطح رو به بیرون است) استفاده میکنیم و خواهیم داشت: