Graphe de Foster — Wikipédia

Graphe de Foster
Image illustrative de l’article Graphe de Foster
Représentation du graphe de Foster

Nombre de sommets 90
Nombre d'arêtes 135
Distribution des degrés 3-régulier
Rayon 8
Diamètre 8
Maille 10
Automorphismes 4 320
Nombre chromatique 2
Indice chromatique 3
Propriétés Régulier
Cubique
Hamiltonien
Arête-transitif
Distance-transitif
Sommet-transitif
Cayley
Symétrique

Le graphe de Foster est, en théorie des graphes, un graphe 3-régulier possédant 90 sommets et 135 arêtes.

Propriétés

[modifier | modifier le code]

Propriétés générales

[modifier | modifier le code]

Le diamètre du graphe de Foster, l'excentricité maximale de ses sommets, est 8, son rayon, l'excentricité minimale de ses sommets, est 8 et sa maille, la longueur de son plus court cycle, est 10. Il s'agit d'un graphe 3-sommet-connexe et d'un graphe 3-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 3 sommets ou de 3 arêtes.

Le nombre chromatique du graphe de Foster est 2. C'est-à-dire qu'il est possible de le colorer avec 2 couleurs de telle façon que deux sommets reliés par une arête soient toujours de couleurs différentes. Ce nombre est minimal.

L'indice chromatique du graphe de Foster est 3. Il existe donc une 3-coloration des arêtes du graphe telle que deux arêtes incidentes à un même sommet soient toujours de couleurs différentes. Ce nombre est minimal.

Propriétés algébriques

[modifier | modifier le code]

Le groupe d'automorphismes du graphe de Foster est un groupe d'ordre 4 320.

Le polynôme caractéristique de la matrice d'adjacence du graphe de Foster est : .

Liens internes

[modifier | modifier le code]

Liens externes

[modifier | modifier le code]

Références

[modifier | modifier le code]