Problème de la somme de sous-ensembles — Wikipédia
Le problème de la somme de sous-ensembles (en anglais : subset sum problem) est un problème de décision important en complexité algorithmique et en cryptologie. Le problème peut être décrit de la manière suivante : étant donné un ensemble de entiers, existe-t-il un sous-ensemble de dont la somme des éléments est nulle ? Par exemple, pour l'ensemble {-8, -3, -2, 4, 5}, la réponse est oui car la somme des éléments du sous-ensemble {-3, -2, 5} est nulle, par contre pour {-6, -1, 2, 3, 8} la réponse est non.
Le problème de la somme des sous-ensembles est NP-complet[1], c'est-à-dire considéré comme difficile à résoudre efficacement par un algorithme. Il peut être vu comme un cas particulier du problème du sac à dos.
Variantes et problèmes liés
[modifier | modifier le code]Avec une cible t
[modifier | modifier le code]Le problème de la somme de sous-ensembles peut être décrit avec une cible entière :
Étant donné un ensemble de entiers, existe-t-il un sous-ensemble de dont la somme des éléments est ?
Problème de partition
[modifier | modifier le code]Le problème de partition est un problème proche. Étant donné un ensemble de entiers, il faut décider si l'on peut partitionner en deux ensembles de même somme.
3SUM
[modifier | modifier le code]Le problème 3SUM (en) est le suivant. Étant donné un ensemble de entiers, existe-t-il trois entiers dont la somme est nulle ?
Ce problème peut être résolu facilement par programmation dynamique en temps O(n²), mais il est conjecturé que cette complexité est optimale. De nombreux problèmes, notamment en géométrie algorithmique sont prouvés 3SUM-difficiles.
Complexité
[modifier | modifier le code]Le problème de la somme de sous-ensembles est NP-complet[1] : on peut par exemple lui réduire polynomialement le problème 3-SAT[1],[2].
Algorithmes
[modifier | modifier le code]Algorithme exponentiel
[modifier | modifier le code]Algorithme pseudo-polynomial
[modifier | modifier le code]Algorithme d'approximation
[modifier | modifier le code]Un algorithme d'approximation peut résoudre la version suivante du problème. Étant donné un ensemble E de N entiers et un entier s, retourner
- oui, s'il y a un sous-ensemble de E dont la somme des éléments est s ;
- non, s'il n'y a pas de sous-ensemble de E dont la somme des éléments est entre (1-c)s et s pour un petit c>0 ;
- n'importe quoi, s'il y a un sous-ensemble de E dont la somme des éléments est entre (1-c)s et s, mais aucun dont la somme est s.
Si tous les nombres sont positifs ou nuls, la version approximative du problème de la somme de sous-ensembles se résout en temps polynomial en fonction de N et 1/c.
Notes et références
[modifier | modifier le code]- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest et Clifford Stein, Introduction à l'algorithmique, Dunod, [détail de l’édition], «Problème de la somme de sous-ensemble», chap. 35.5, p. 1007
- Sylvain Perifel, Complexité algorithmique, Ellipses, , 432 p. (ISBN 9782729886929, lire en ligne) pp. 83−85, preuve de la Proposition 3-AH
Bibliographie
[modifier | modifier le code]- (en) Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest et Clifford Stein, Introduction to Algorithms, MIT Press et McGraw-Hill, , 2e éd. [détail de l’édition]. Chapter 35.5, « The subset-sum problem ».
- Michael R. Garey, David S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979, (ISBN 0-7167-1045-5).