力学的エネルギー

力学的エネルギー(りきがくてきエネルギー、: mechanical energy)とは、運動エネルギー位置エネルギーポテンシャル)の和のことを指す[1]

保存力の場での質点の運動では力学的エネルギー(運動エネルギーと位置エネルギー(ポテンシャル)の和)が一定となる。これを、力学的エネルギー保存の法則(力学的エネルギー保存則)と言う[2]

これを式で書くと次のようになる。ただし、運動エネルギーを K、ポテンシャルを U、力学的エネルギーを E とする。

一般にこれが保存するとき(即ち、保存力のみが仕事をし、非保存力が仕事をしないとき)によく使われる概念である。エネルギーが保存する場合、エネルギーの総和は初期条件で決まる。運動エネルギー K は、

なので、

となり、ポテンシャルの範囲が決まってしまう。ポテンシャルは位置に依存する量なので、これは運動の領域が決まることになる。ポテンシャルの概形が分かれば運動の様子がある程度推測できる。例えば、調和振動のポテンシャルは、

である。 (x0 は振動中心の位置ベクトル)これは変位の二乗の形になっている。これを知っているならば、ポテンシャルの底が x2 の形になっている場合は単振動をすることが分かる。単振り子のポテンシャルは三角関数で書ける。

十分に振幅が小さいときには単振動で近似できることが分かる。

力学的エネルギーは、熱力学での内部エネルギー摩擦などを通してやりとりされる)や他のエネルギーに変わりうる。この場合、力学的エネルギーの保存は成立しなくなるが、エネルギー全体としては保存している。つまりこの場合は、より広義の意味でエネルギーは保存している(→エネルギー保存の法則)。

力学的エネルギーの散逸

[編集]

保存力でない力を非保存力という。非保存力が仕事をする場合、力学的エネルギーは保存しない。 具体的な非保存力の例は、

動摩擦力
粘性抵抗力
慣性抵抗力

ただし、である。

一般に非保存力fとして、

と表される。

運動方程式

である。 この式の両辺に速度をかけると、

力学的エネルギーの時間変化率は、である。非保存力が仕事をすると、力学的エネルギーは必ず減少する。 非保存力により力学的エネルギーが減少することを散逸という。

脚注

[編集]
  1. ^ 原康夫『物理学通論 I』 学術図書出版、2004年、p58
  2. ^ 原康夫『物理学通論 I』 学術図書出版、2004年、pp92-93

関連項目

[編集]