TGF-β1

TGFB1
PDBに登録されている構造
PDBオルソログ検索: RCSB PDBe PDBj
PDBのIDコード一覧

1KLA, 1KLC, 1KLD, 3KFD, 4KV5

識別子
記号TGFB1, CED, DPD1, LAP, TGFB, TGFbeta, transforming growth factor beta 1, IBDIMDE, TGF-beta1
外部IDOMIM: 190180 MGI: 98725 HomoloGene: 540 GeneCards: TGFB1
遺伝子の位置 (ヒト)
19番染色体 (ヒト)
染色体19番染色体 (ヒト)[1]
19番染色体 (ヒト)
TGFB1遺伝子の位置
TGFB1遺伝子の位置
バンドデータ無し開始点41,301,587 bp[1]
終点41,353,922 bp[1]
遺伝子の位置 (マウス)
7番染色体 (マウス)
染色体7番染色体 (マウス)[2]
7番染色体 (マウス)
TGFB1遺伝子の位置
TGFB1遺伝子の位置
バンドデータ無し開始点25,386,427 bp[2]
終点25,404,502 bp[2]
RNA発現パターン


さらなる参照発現データ
遺伝子オントロジー
分子機能 type II transforming growth factor beta receptor binding
protein N-terminus binding
cytokine activity
酵素結合
growth factor activity
抗原結合
type I transforming growth factor beta receptor binding
protein homodimerization activity
protein serine/threonine kinase activator activity
血漿タンパク結合
protein heterodimerization activity
type III transforming growth factor beta receptor binding
transforming growth factor beta receptor binding
identical protein binding
細胞の構成要素 細胞質
細胞外領域
細胞核
微絨毛
cell surface
blood microparticle
細胞膜
secretory granule
神経繊維
soma
Golgi lumen
platelet alpha granule lumen
細胞外マトリックス
細胞外空間
生物学的プロセス positive regulation of histone deacetylation
positive regulation of transcription regulatory region DNA binding
ureteric bud development
tolerance induction to self antigen
positive regulation of protein phosphorylation
内胚葉の発生
response to cholesterol
positive regulation of MAP kinase activity
regulation of sodium ion transport
response to progesterone
negative regulation of cell cycle
有機物への反応
乳房発達
T cell homeostasis
negative regulation of ossification
negative regulation of hyaluronan biosynthetic process
タンパク質リン酸化
T cell differentiation
positive regulation of vascular permeability
animal organ regeneration
positive regulation of blood vessel endothelial cell migration
negative regulation of epithelial cell proliferation
regulation of binding
inner ear development
myelination
negative regulation of macrophage cytokine production
細胞増殖
transforming growth factor beta receptor signaling pathway
face morphogenesis
negative regulation of cell population proliferation
positive regulation of receptor clustering
regulation of apoptotic process
positive regulation of collagen biosynthetic process
cellular response to transforming growth factor beta stimulus
pathway-restricted SMAD protein phosphorylation
regulation of DNA binding
regulation of actin cytoskeleton reorganization
negative regulation of fat cell differentiation
positive regulation of protein metabolic process
cell-cell junction organization
negative regulation of myoblast differentiation
positive regulation of protein kinase B signaling
common-partner SMAD protein phosphorylation
positive regulation of branching involved in ureteric bud morphogenesis
SMAD protein signal transduction
epidermal growth factor receptor signaling pathway
macrophage derived foam cell differentiation
negative regulation of blood vessel endothelial cell migration
positive regulation of protein dephosphorylation
extrinsic apoptotic signaling pathway
negative regulation of extracellular matrix disassembly
mitotic cell cycle checkpoint signaling
positive regulation of fibroblast proliferation
negative regulation of cell differentiation
regulation of branching involved in mammary gland duct morphogenesis
positive regulation of exit from mitosis
negative regulation of transforming growth factor beta receptor signaling pathway
遺伝子発現の負の調節
morphogenesis of a branching structure
regulation of SMAD protein signal transduction
positive regulation of peptidyl-serine phosphorylation
cell activation
negative regulation of neuroblast proliferation
positive regulation of transcription, DNA-templated
細胞増殖
negative regulation of T cell proliferation
response to wounding
negative regulation of cell growth
positive regulation of chemotaxis
protein export from nucleus
regulation of protein import into nucleus
positive regulation of peptidyl-tyrosine phosphorylation
positive regulation of protein import into nucleus
positive regulation of cardiac muscle cell differentiation
oligodendrocyte development
positive regulation of interleukin-17 production
炎症反応
negative regulation of interleukin-17 production
リンパ節発生
T cell activation
Notchシグナリング
negative regulation of protein phosphorylation
regulation of blood vessel remodeling
SMAD protein complex assembly
regulation of striated muscle tissue development
response to vitamin D
chondrocyte differentiation
regulatory T cell differentiation
regulation of cartilage development
branch elongation involved in mammary gland duct branching
positive regulation of bone mineralization
positive regulation of epithelial cell proliferation
female pregnancy
cellular response to organic cyclic compound
positive regulation of extracellular matrix assembly
cellular calcium ion homeostasis
傷の治癒
negative regulation of transcription by RNA polymerase II
response to glucose
positive regulation of epithelial to mesenchymal transition
デキサメタゾン刺激に対する細胞応答
negative regulation of production of miRNAs involved in gene silencing by miRNA
mitigation of host defenses by virus
lens fiber cell differentiation
positive regulation of NF-kappaB transcription factor activity
extracellular matrix assembly
ATP biosynthetic process
hematopoietic progenitor cell differentiation
regulation of interleukin-23 production
positive regulation of protein secretion
frontal suture morphogenesis
上皮間葉転換
リン酸を含む化合物の代謝プロセス
遺伝子発現調節
adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains
negative regulation of release of sequestered calcium ion into cytosol
response to radiation
mononuclear cell proliferation
negative regulation of transcription, DNA-templated
negative regulation of T cell activation
positive regulation of odontogenesis
リポ多糖を介したシグナル伝達経路
positive regulation of protein localization to nucleus
エストラジオールへの反応
regulation of cell migration
低酸素症への反応
hyaluronan catabolic process
negative regulation of phagocytosis
有機環状化合物への反応
positive regulation of protein-containing complex assembly
Akt/PKBシグナル経路
negative regulation of cell-cell adhesion
negative regulation of gene silencing by miRNA
positive regulation of regulatory T cell differentiation
cellular response to growth factor stimulus
positive regulation of pathway-restricted SMAD protein phosphorylation
mammary gland branching involved in thelarche
response to laminar fluid shear stress
老化
regulation of regulatory T cell differentiation
platelet degranulation
negative regulation of DNA replication
myeloid dendritic cell differentiation
salivary gland morphogenesis
receptor catabolic process
MAPK cascade
positive regulation of histone acetylation
regulation of transforming growth factor beta receptor signaling pathway
positive regulation of phosphatidylinositol 3-kinase activity
negative regulation of protein localization to plasma membrane
positive regulation of NAD+ ADP-ribosyltransferase activity
negative regulation of immune response
regulation of cell population proliferation
negative regulation of skeletal muscle tissue development
positive regulation of peptidyl-threonine phosphorylation
positive regulation of smooth muscle cell differentiation
positive regulation of isotype switching to IgA isotypes
connective tissue replacement involved in inflammatory response wound healing
ossification involved in bone remodeling
positive regulation of apoptotic process
positive regulation of vascular endothelial growth factor production
positive regulation of superoxide anion generation
消化管発生
遊走
positive regulation of fibroblast migration
positive regulation of cell division
germ cell migration
positive regulation of transcription by RNA polymerase II
negative regulation of mitotic cell cycle
positive regulation of SMAD protein signal transduction
positive regulation of pri-miRNA transcription by RNA polymerase II
positive regulation of gene expression
positive regulation of cell population proliferation
liver regeneration
regulation of epithelial to mesenchymal transition involved in endocardial cushion formation
positive regulation of mononuclear cell migration
cellular response to insulin-like growth factor stimulus
positive regulation of cell migration
response to immobilization stress
cellular response to mechanical stimulus
cellular response to ionizing radiation
脈管形成
neural tube closure
heart valve morphogenesis
心臓発生
神経管発生
membrane protein intracellular domain proteolysis
leukocyte migration
ventricular cardiac muscle tissue morphogenesis
positive regulation of ERK1 and ERK2 cascade
transforming growth factor beta receptor signaling pathway involved in heart development
embryonic liver development
BMP signaling pathway
細胞発生
アポトーシス
regulation of pri-miRNA transcription by RNA polymerase II
positive regulation of production of miRNAs involved in gene silencing by miRNA
regulation of signaling receptor activity
出典:Amigo / QuickGO
オルソログ
ヒトマウス
Entrez
Ensembl
UniProt
RefSeq
(mRNA)

NM_000660

NM_011577

RefSeq
(タンパク質)

NP_000651

NP_035707

場所
(UCSC)
Chr 19: 41.3 – 41.35 MbChr 19: 25.39 – 25.4 Mb
PubMed検索[3][4]
ウィキデータ
閲覧/編集 ヒト閲覧/編集 マウス

TGF-β1(transforming growth factor beta 1)は、TGF-βスーパーファミリーに属するサイトカインの1つであり、細胞成長、細胞増殖、細胞分化アポトーシスの制御など、多くの細胞機能を発揮する分泌タンパク質である。ヒトでは、TGF-β1はTGFB1遺伝子にコードされる[5][6]

機能

[編集]

TGF-βは、多くの細胞種において増殖、分化やその他の機能を制御する多機能型ペプチド群である。形質転換の誘導においては、TGF-βはTGF-αと相乗的に機能する。また、成長を負に制御する自己分泌成長因子でもある。TGF-βの活性化やシグナル伝達の調節不全によって、アポトーシスが引き起こされる可能性がある。多くの細胞がTGF-βを合成し、そのほぼ全てで対応する特異的受容体が発現している。TGF-β1、TGF-β2英語版TGF-β3英語版は全て同じ受容体を介して機能する[7]

TGF-β1は、ヒトの血小板において創傷治癒に関与している可能性のある25 kDaのタンパク質として最初に同定された[8][9]。その後、大きな前駆体タンパク質(390アミノ酸)がタンパク質切断によって112アミノ酸の成熟ペプチドへとプロセシングされたものであることが明らかにされた[10]

TGF-β1は免疫系の制御に重要な役割を果たしており、細胞の種類やその発生段階によって異なる活性を示すことが示されている。大部分の免疫細胞(白血球)がTGF-β1を分泌していることが知られている[11]

T細胞

[編集]

一部のT細胞制御性T細胞など)はTGF-β1を放出して他のT細胞の作用を阻害している。具体的には、TGF-β1は活性化されたT細胞のIL-1IL-2に依存的な増殖や[12][13]、静止状態のヘルパーT細胞細胞傷害性T細胞の活性化を阻害する[14][15]。同様にTGF-β1は、IFN-γTNF-αなど他の多くのサイトカインやさまざまなインターロイキンの分泌と活性を阻害する。また、IL-2受容体英語版などのサイトカイン受容体英語版の発現レベルを低下させ、免疫細胞の活性をダウンレギュレーションする。一方でTGF-β1は、特に未成熟なT細胞に対しては、特定のサイトカインの発現上昇をもたらし、その増殖を促進する場合もある[11][16]

B細胞

[編集]

TGF-β1はB細胞にも同様の影響を及ぼし、この作用もまた細胞の分化状態によって異なる。B細胞の増殖を阻害してアポトーシスを刺激し[17]、また未成熟型・成熟型B細胞上への抗体トランスフェリンMHCクラスII分子の発現を制御する[11][17]

骨髄系細胞

[編集]

マクロファージ単球へのTGF-β1の作用は、主に抑制的なものである。このサイトカインはこれらの細胞の増殖を阻害し、活性酸素種スーパーオキシド(O2)など)や活性窒素種一酸化窒素(NO)など)の産生を阻害する。また、TGF-β1は骨髄由来の細胞に対して反対の作用を及ぼす場合もある。例えば、TGF-β1は化学誘引物質として作用し、特定の病原体に対する免疫応答を指示する。同様に、マクロファージや単球は低濃度のTGF-β1に対する走化性応答を示す。さらに、単球のサイトカインの発現(IL-1α英語版IL-1β、TNF-αなど)やマクロファージの食作用はTGF-β1の作用によって増大する[11]

TGF-β1はアストロサイト樹状細胞のMHCクラスII分子の発現を低下させ、それによってヘルパーT細胞集団の活性化を低下させる[18][19]

相互作用

[編集]

TGF-β1は次に挙げる因子と相互作用することが示されている。

出典

[編集]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000105329 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000002603 - Ensembl, May 2017
  3. ^ Human PubMed Reference:
  4. ^ Mouse PubMed Reference:
  5. ^ “Genetic mapping of the Camurati-Engelmann disease locus to chromosome 19q13.1-q13.3”. Am. J. Hum. Genet. 66 (1): 143–7. (January 2000). doi:10.1086/302728. PMC 1288319. PMID 10631145. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1288319/. 
  6. ^ “Confirmation of the mapping of the Camurati-Englemann locus to 19q13. 2 and refinement to a 3.2-cM region”. Genomics 66 (1): 119–21. (May 2000). doi:10.1006/geno.2000.6192. PMID 10843814. 
  7. ^ Entrez Gene: TGFB1 transforming growth factor, beta 1”. 11 March 2009閲覧。
  8. ^ “Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization”. J. Biol. Chem. 258 (11): 7155–60. (1983). doi:10.1016/S0021-9258(18)32345-7. PMID 6602130. 
  9. ^ Custo, S; Baron, B; Felice, A; Seria, E (5 July 2022). “A comparative profile of total protein and six angiogenically-active growth factors in three platelet products”. GMS Interdisciplinary Plastic and Reconstructive Surgery DGPW 11 (Doc06): Doc06. doi:10.3205/iprs000167. PMC 9284722. PMID 35909816. https://www.egms.de/static/en/journals/iprs/2022-11/iprs000167.shtml#block5. 
  10. ^ “Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells”. Nature 316 (6030): 701–5. (1985). Bibcode1985Natur.316..701D. doi:10.1038/316701a0. PMID 3861940. https://zenodo.org/record/1233037. 
  11. ^ a b c d “Regulation of immune responses by TGF-beta”. Annu. Rev. Immunol. 16: 137–61. (1998). doi:10.1146/annurev.immunol.16.1.137. PMID 9597127. https://zenodo.org/record/1234983. 
  12. ^ “Transforming growth factor-beta is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation”. J. Immunol. 140 (9): 3026–32. (1988). doi:10.4049/jimmunol.140.9.3026. PMID 3129508. 
  13. ^ “Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response”. Int. Immunol. 15 (12): 1495–504. (2003). doi:10.1093/intimm/dxg147. PMID 14645158. 
  14. ^ “Transforming growth factor-beta 1 induces antigen-specific unresponsiveness in naive T cells”. Immunol. Invest. 26 (4): 459–72. (1997). doi:10.3109/08820139709022702. PMID 9246566. 
  15. ^ “TGF-beta: a mobile purveyor of immune privilege”. Immunol. Rev. 213: 213–27. (2006). doi:10.1111/j.1600-065X.2006.00437.x. PMID 16972906. https://zenodo.org/record/1230716. 
  16. ^ “Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage”. Prog. Neurobiol. 178: 101610. (March 2019). doi:10.1016/j.pneurobio.2019.03.003. PMID 30923023. 
  17. ^ a b “The role of TGF-beta in growth, differentiation, and maturation of B lymphocytes”. Microbes Infect. 1 (15): 1297–304. (1999). doi:10.1016/S1286-4579(99)00254-3. PMID 10611758. 
  18. ^ “Human myeloid dendritic cells treated with supernatants of rotavirus infected Caco-2 cells induce a poor Th1 response”. Cellular Immunology 272 (2): 154–61. (2012-01-01). doi:10.1016/j.cellimm.2011.10.017. PMID 22082567. 
  19. ^ “The Smad3 protein is involved in TGF-beta inhibition of class II transactivator and class II MHC expression”. Journal of Immunology 167 (1): 311–9. (July 2001). doi:10.4049/jimmunol.167.1.311. PMID 11418665. 
  20. ^ “Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta”. Biochem. J. 302 (2): 527–34. (September 1994). doi:10.1042/bj3020527. PMC 1137259. PMID 8093006. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1137259/. 
  21. ^ “Decorin core protein fragment Leu155-Val260 interacts with TGF-beta but does not compete for decorin binding to type I collagen”. Arch. Biochem. Biophys. 355 (2): 241–8. (July 1998). doi:10.1006/abbi.1998.0720. PMID 9675033. 
  22. ^ “Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity”. J. Biol. Chem. 269 (51): 32634–8. (Dec 1994). doi:10.1016/S0021-9258(18)31681-8. PMID 7798269. 
  23. ^ “The type II transforming growth factor (TGF)-beta receptor-interacting protein TRIP-1 acts as a modulator of the TGF-beta response”. J. Biol. Chem. 273 (47): 31455–62. (November 1998). doi:10.1074/jbc.273.47.31455. PMID 9813058. 
  24. ^ “Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta”. Mol. Biol. Cell 11 (8): 2691–704. (August 2000). doi:10.1091/mbc.11.8.2691. PMC 14949. PMID 10930463. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC14949/. 
  25. ^ “Determination of type I receptor specificity by the type II receptors for TGF-beta or activin”. Science 262 (5135): 900–2. (November 1993). Bibcode1993Sci...262..900E. doi:10.1126/science.8235612. PMID 8235612. 
  26. ^ “Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis”. Proc. Natl. Acad. Sci. U.S.A. 97 (6): 2626–31. (March 2000). Bibcode2000PNAS...97.2626O. doi:10.1073/pnas.97.6.2626. PMC 15979. PMID 10716993. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC15979/. 
  27. ^ “Conserved role for 14-3-3epsilon downstream of type I TGFbeta receptors”. FEBS Lett. 490 (1–2): 65–9. (February 2001). doi:10.1016/s0014-5793(01)02133-0. PMID 11172812. 

関連文献

[編集]

外部リンク

[編集]
  • Overview of all the structural information available in the PDB for UniProt: P01137 (Transforming growth factor beta-1) at the PDBe-KB.