Voortbrengen (algebra en lineaire algebra)

Voortbrengen is een term die in verschillende deelgebieden van de wiskunde gebruikt wordt. In het algemeen brengt een verzameling elementen een bepaalde structuur voort als die structuur de kleinste is die de gegeven verzameling omvat.

In de algebra zegt men dat een groep voortgebracht wordt door een deelverzameling van een groep , als de kleinste ondergroep van is die de verzameling omvat. Er bestaat altijd zo'n kleinste ondergroep, het is namelijk de doorsnede van alle ondergroepen van die omvatten. Men noemt een genererende verzameling van

Lineaire algebra

[bewerken | brontekst bewerken]
Zie Lineair omhulsel voor het hoofdartikel over dit onderwerp.

Binnen de lineaire algebra zegt men dat een stelsel vectoren uit een vectorruimte de deelruimte van voortbrengt, als bestaat uit alle lineaire combinaties van de vectoren in

Men noemt de lineaire deelruimte die wordt voortgebracht door , of erdoor wordt opgespannen, en noteert:

In het geval dat eindig is, zegt men ook:

De door voortgebrachte ruimte wordt het lineair omhulsel van genoemd.

Als het genoemde stelsel vectoren lineair onafhankelijk is, dan is een basis van de voortgebrachte deelruimte

Meer algemeen geldt: als de vectorruimte wordt voortgebracht door het stelsel , dan bevat een basis van

De door voortgebrachte ruimte verandert niet

  • als men aan een vector uit toevoegt;
  • als men een vector uit die een lineaire combinatie is van de overige vectoren uit , weglaat;
  • als men in een vector vermenigvuldigt met een van nul verschillend getal (scalair);
  • als men bij een vector uit , een andere vector uit optelt.