Teorema espectral – Wikipédia, a enciclopédia livre
Os teoremas espectrais são fundamentais na álgebra linear, por garantirem a existência de uma base ortonormal de autovectores para alguns tipos de operadores. Isto implica que o operador seja diagonalizável, o que facilita bastante os cálculos.[1][2]
Tipos
[editar | editar código-fonte]Para operadores auto-adjuntos
[editar | editar código-fonte]Seja um operador auto-adjunto e V um espaço vetorial complexo ou real de dimensão n. Então existe uma base ortonormal de V formada por autovectores de T.[3][1]
Para operadores normais
[editar | editar código-fonte]Seja um operador linear e V um espaço vetorial complexo de dimensão n. Então T é normal se, e somente se, existe uma base ortonormal de V formada por autovectores de T. Note que, como todo operador unitário é normal, o teorema pode ser estendido a operadores desse tipo.[3][1]
Para operadores compactos auto-adjuntos em espaços de Hilbert
[editar | editar código-fonte]Seja um espaço de Hilbert separável e um operador compacto auto-adjunto, então existe uma família ortonormal de autovetores com autovalores associados tais que:[3]
Ver também
[editar | editar código-fonte]Referências
- ↑ a b c 1958-, Beezer, Robert A. (Robert Arnold), (2012). A first course in linear algebra. Gig Harbor, Wash.: Congruent Press. ISBN 9780984417551. OCLC 839681634
- ↑ Howard., Anton,. Elementary linear algebra 10th edition ed. Hoboken, NJ: [s.n.] ISBN 9780470432051. OCLC 463637219
- ↑ a b c Hoffman,Kunze, Kenneth,Ray (1971). Linear Algebra. Nova Jersey: Prentice-Hall. pp. 343–354