Д’Аламбер, Жан Лерон — Википедия
Жан Лерон Д’Аламбер | |
---|---|
фр. Jean Le Rond D'Alembert | |
| |
Имя при рождении | фр. Jean Baptiste Louis d’Aremberg[1] |
Дата рождения | 16 ноября 1717 |
Место рождения | Париж |
Дата смерти | 29 октября 1783 (65 лет) |
Место смерти | Париж |
Страна | Королевство Франция |
Род деятельности | философ, математик, физик, музыковед, переводчик, писатель, теоретик музыки, энциклопедисты, инженер, астроном, лексикограф, интеллектуал |
Научная сфера | математика, механика |
Альма-матер |
|
Научный руководитель | Léonor Caron[вд][4] |
Ученики | П. С. Лаплас |
Известен как | один из авторов «Энциклопедии наук, искусств и ремёсел» |
Автограф | |
Цитаты в Викицитатнике | |
Произведения в Викитеке | |
Медиафайлы на Викискладе |
Жан Леро́н Д’Аламбе́р (д’Аламбер, Даламбер; фр. Jean Le Rond D'Alembert, d'Alembert; 16 ноября 1717 — 29 октября 1783) — французский учёный-энциклопедист. Широко известен как философ, математик и механик.
Член Парижской академии наук (1740), Французской Академии (1754), Лондонского королевского общества (1748)[5], Петербургской академии наук (1764)[6] и других академий.
Биография
[править | править код]Д’Аламбер был незаконным сыном маркизы де Тансен[7] и, по всей вероятности, австрийского герцога Леопольда Филиппа Аренберга. Вскоре после рождения младенец был подкинут матерью на ступени парижской «Круглой церкви Св. Иоанна[фр.]», которая располагалась у северной башни Собора Парижской Богоматери. По обычаю, в честь этой церкви ребёнок был назван Жаном Лероном. Вначале ребёнка поместили в Больницу Подкидышей. Затем доверенное лицо герцога артиллерийский офицер Луи-Камю Детуш, получивший деньги для воспитания мальчика, устроил его в семье стекольщика Руссо[8].
Вернувшись во Францию, Детуш привязался к мальчику, часто навещал его, помогал приёмным родителям и оплатил образование Д’Аламбера. Мать-маркиза никакого интереса к сыну так и не проявила. Позднее, став знаменитым, Д’Аламбер никогда не забывал стекольщика и его жену, помогал им материально и всегда с гордостью называл своими родителями.
Фамилия Д’Аламбер, по одним сведениям, произведена из имени его приёмного отца Аламбера, по другим — придумана самим мальчиком или его опекунами: сначала Жан Лерон был записан в школе как Дарамбер (Daremberg), потом сменил это имя на D’Alembert. Название «Даламбер» было предложено Фридрихом Великим для предполагаемой (но не существующей) луны Венеры[9].
1726: Детуш, уже ставший генералом, неожиданно умирает. По завещанию Д’Аламбер получает пособие в 1200 ливров в год и препоручается вниманию родственников. Мальчик воспитывается наряду с двоюродными братьями и сёстрами, но живёт по-прежнему в семье стекольщика. Он жил в доме приёмных родителей до 1765 года, то есть до 48-летнего возраста[10].
Рано проявившийся талант позволил мальчику получить хорошее образование — сначала в коллегии Мазарини (получил степень магистра свободных наук), затем в Академии юридических наук, где он получил звание лиценциата прав. Однако профессия адвоката ему была не по душе, и он стал изучать математику. Он также интересовался медициной.
Уже в возрасте 22 лет Д’Аламбер представил Парижской академии свои сочинения, а в 23 года был избран адъюнктом Академии. В 1746 году он был избран в Берлинскую академию[11], а в 1748 году членом Лондонского Королевского общества[12].
1743: вышел «Трактат о динамике», где сформулирован фундаментальный «Принцип Д’Аламбера», сводящий динамику несвободной системы к статике[13]. Здесь он впервые сформулировал общие правила составления дифференциальных уравнений движения любых материальных систем.
Позже этот принцип был применен им в трактате «Рассуждения об общей причине ветров» (1774) для обоснования гидродинамики, где он доказал существование — наряду с океанскими — также и воздушных приливов[англ.].
1748: блестящее исследование задачи о колебаниях струны.
С 1751 года Д’Аламбер работал вместе с Дидро над созданием знаменитой «Энциклопедии наук, искусств и ремёсел». Статьи 17-томной «Энциклопедии», относящиеся к математике и физике, написаны Д’Аламбером. В 1757 году, не выдержав преследований реакции, которым подвергалась его деятельность в «Энциклопедии» (свою роль сыграл и скандала вокруг его статьи «Женева» в 7-м томе), он отошёл от её издания и целиком посвятил себя научной работе (хотя статьи для «Энциклопедии» продолжал писать и руководить её физико-математическим отделом). «Энциклопедия» сыграла большую роль в распространении идей Просвещения и идеологической подготовке Французской революции.
1754: Д’Аламбер становится членом Французской Академии.
1764: в статье «Размерность» (для Энциклопедии) впервые высказана мысль о возможности рассматривать время как четвёртое измерение.
Д’Аламбер вёл активную переписку с российской императрицей Екатериной II[14]. В середине 1760-х годов Д’Аламбер был приглашён ею в Россию в качестве воспитателя наследника престола, однако приглашения не принял. В 1764 г. был избран иностранным почётным членом Петербургской академии наук[15].
1772: Д’Аламбер избран непременным секретарём Французской Академии[16]. В 1781 году он был избран иностранным почетным членом Американской академии искусств и наук[17].
1783: после долгой болезни Д’Аламбер умер. Церковь отказала «отъявленному атеисту» в месте на кладбище, и его похоронили в общей могиле, ничем не обозначенной.
В честь Д’Аламбера назван кратер на обратной стороне Луны.
Научные достижения
[править | править код]Математика
[править | править код]В первых томах знаменитой «Энциклопедии» Д’Аламбер поместил важные статьи: «Дифференциалы», «Уравнения», «Динамика» и «Геометрия», в которых подробно излагал свою точку зрения на актуальные проблемы науки.
Исчисление бесконечно малых Д’Аламбер стремился обосновать с помощью теории пределов, близкой к ньютоновскому пониманию «метафизики анализа». Он назвал одну величину пределом другой, если вторая, приближаясь к первой, отличается от неё менее чем на любую заданную величину. «Дифференцирование уравнений состоит попросту в том, что находят пределы отношения конечных разностей двух переменных, входящих в уравнение» — эта фраза могла бы стоять и в современном учебнике. Он исключил из анализа понятие актуальной бесконечно малой, допуская его лишь для краткости речи.
Перспективность его подхода несколько снижалась тем, что стремление к пределу он почему-то понимал как монотонное (видимо, чтобы ), да и внятной теории пределов Д’Аламбер не дал, ограничившись теоремами о единственности предела и о пределе произведения. Большинство математиков (в том числе Лазар Карно) возражали против теории пределов, так как она, по их мнению, устанавливала излишние ограничения — рассматривала бесконечно малые не сами по себе, а всегда в отношении одной к другой, и нельзя было в стиле Лейбница свободно использовать алгебру дифференциалов. И всё же подход Д’Аламбера к обоснованию анализа в конце концов одержал верх — правда, только в XIX веке.
В теории рядов его имя носит широко употребительный достаточный признак сходимости.
Основные математические исследования Д’Аламбера относятся к теории дифференциальных уравнений, где он дал метод решения дифференциального уравнения 2-го порядка в частных производных, описывающего поперечные колебания струны (волнового уравнения). Д’Аламбер представил решение как сумму двух произвольных функций, и по т. н. граничным условиям сумел выразить одну из них через другую. Эти работы Д’Аламбера, а также последующие работы Л. Эйлера и Д. Бернулли составили основу математической физики.
В 1752 году, при решении одного дифференциального уравнения с частными производными эллиптического типа (модель обтекания тела), встретившегося в гидродинамике, Д’Аламбер впервые применил функции комплексного переменного. У Д’Аламбера (а вместе с тем и у Л. Эйлера) встречаются те уравнения, связывающие действительную и мнимую части аналитической функции, которые впоследствии получили название условия Коши — Римана, хотя по справедливости их следовало бы назвать условиями Д’Аламбера — Эйлера. Позже те же методы применялись в теории потенциала. С этого момента начинается широкое и плодотворное использование комплексных величин в гидродинамике.
Д’Аламберу принадлежат также важные результаты в теории обыкновенных дифференциальных уравнений с постоянными коэффициентами и систем таких уравнений 1-го и 2-го порядков.
Д’Аламбер дал первое (не вполне строгое) доказательство основной теоремы алгебры. Во Франции она называется теоремой Д’Аламбера — Гаусса.
Физика, механика и другие работы
[править | править код]Выше уже упоминался открытый им принцип Д’Аламбера, указавший, как строить математическую модель движения несвободных систем.
Выдающийся вклад Д’Аламбер внёс также в небесную механику. Он обосновал теорию возмущения планет и первым строго объяснил теорию предварения равноденствий и нутации.
Опираясь на систему Фрэнсиса Бэкона, Д’Аламбер классифицировал науки, положив начало современному понятию «гуманитарные науки».
Д’Аламберу принадлежат также работы по вопросам музыкальной теории и музыкальной эстетики: трактат «О свободе музыки», в котором подведены итоги т. н. войны буффонов — борьбы вокруг вопросов оперного искусства, и др.
Философия
[править | править код]Из философских работ наиболее важное значение имеют вступительная статья к «Энциклопедии», «Очерк происхождения и развития наук» (1751, рус. пер. в книге «Родоначальники позитивизма», 1910), в которой дана классификация наук, и «Элементы философии» (1759).
В теории познания вслед за Дж. Локком Д’Аламбер придерживался сенсуализма. В решении основных философских вопросов Д’Аламбер склонялся к скептицизму, считая невозможным что-либо достоверно утверждать о Боге, взаимодействии его с материей, вечности или сотворённости материи и т. п. Сомневаясь в существовании Бога и выступая с антиклерикальной критикой, Д’Аламбер, однако, не встал на позиции атеизма.
В отличие от французских материалистов, Д’Аламбер считал, что существуют неизменные, не зависящие от общественной среды нравственные принципы. Взгляды Д’Аламбера по вопросам теории познания и религии были подвергнуты критике со стороны Дидро в произведении: «Сон Д’Аламбера» (1769), «Разговор Д’Аламбера и Дидро» (1769) и др.
Цитаты
[править | править код]- Работайте, работайте — а понимание придёт потом.
- Я не могу считать законным трату своих избытков, пока другие люди лишены необходимого…
- Истинное равенство граждан состоит в том, чтобы все они одинаково были подчинены законам.
Труды
[править | править код]- D'Alembert, Jean Le Rond. Traité de dynamique. — 2nd. — Gabay (1990 reprint), 1743.
- Oeuvres philosophiques, historiques et litteraires. Т. I—XVII, — P., 1805.
- Œuvres complètes. Т. 1-5. — P., 1821-22. — (Repr. 2002, ISBN 2-271-06013-3).
- English translation of part of the Encyclopédie of Diderot and d’Alembert.
Переводы на русский язык
[править | править код]- Извлечение из мемуара «О равновесии жидкостей». // Клеро А. Теория фигуры Земли, основанная на началах гидростатики. — Л., 1947.
- О фигуре Земли. // В кн.: Клеро А. Теория фигуры Земли, основанная на началах гидростатики. — Л., 1947.
- Динамика. — М.-Л.: Гостехиздат, 1950. — 315 с. — (Серия: Классики естествознания).
- История в энциклопедии Дидро и Д’Аламбера / Пер. с франц. и прим. Н. В. Ревуненковой. Под общ. ред. А. Д. Люблинской. — Л.: Наука, 1978. — 312 с.
- Философия в «Энциклопедии» Дидро и Д’Аламбера. — М.: Наука, 1994. — 720 с. — ISBN 5-02-008196-5
См. также
[править | править код]- Оператор Д’Аламбера — дифференциальный оператор второго порядка где \Delta — оператор Лапласа, c — постоянная. Иногда оператор пишется с противоположным знаком.
- Парадокс Д’Аламбера — утверждение в гидродинамике идеальной жидкости, согласно которому при стационарном (не обязательно потенциальном и безотрывном) обтекании твёрдого тела безграничным поступательным прямолинейным потоком невязкой жидкости, при условии выравнивания параметров далеко впереди и позади тела, сила сопротивления равна нулю.
- Признак Д’Аламбера — признак сходимости числовых рядов
- Принцип Д’Аламбера — один из основных принципов динамики, согласно которому, если к заданным (активным) силам, действующим на точки механической системы, и реакциям наложенных связей присоединить силы инерции, то получится уравновешенная система сил.
- Уравнение Д’Аламбера — дифференциальное уравнение вида где и — функции.
- Формула Д’Аламбера
Примечания
[править | править код]- ↑ https://doi.org/10.4000/rde.4949 — С. 246.
- ↑ Архив по истории математики Мактьютор — 1994.
- ↑ Архив по истории математики Мактьютор — 1994.
- ↑ Mathematics Genealogy Project (англ.) — 1997.
- ↑ Alembert; Jean le Rond d' (1717 - 1783) // Сайт Лондонского королевского общества (англ.)
- ↑ Профиль Жана Лерона Д'Аламбера на официальном сайте РАН
- ↑ История математики / Под редакцией А. П. Юшкевича. В 3-х томах. — М.: Наука, 1970. — Т. III. — С. 71.
- ↑ Hall, 1906, p. 5.
- ↑ Ley, Willy. 1952. Article «Moon of Venus» in Galaxy Science Fiction July 1952. MDP Publishing Galaxy Science Fiction Digital Series, 2016. Retrieved from Google Books Архивная копия от 3 августа 2020 на Wayback Machine.
- ↑ Стиллвелл Д. Математика и её история. — М.-Ижевск: Институт компьютерных исследований, 2004. — С. 270.
- ↑ Hankins, 1990, p. 26.
- ↑ Library and Archive Catalogue . Royal Society. Дата обращения: 3 декабря 2010. Архивировано 26 марта 2020 года.
- ↑ D'Alembert, 1743.
- ↑ Избранная переписка Д’Аламбера и Екатерины II . Дата обращения: 29 февраля 2008. Архивировано 5 мая 2008 года.
- ↑ Советский энциклопедический словарь / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1986. — С. 357. — 1600 с. — 2 500 000 экз.
- ↑ [1] Архивировано 31 мая 2012 года.
- ↑ Book of Members, 1780–2010: Chapter A . American Academy of Arts and Sciences. Дата обращения: 14 апреля 2011. Архивировано 1 марта 2012 года.
Литература
[править | править код]- Т. Б. Длугач. Д’Аламбер // Новая философская энциклопедия : в 4 т. / пред. науч.-ред. совета В. С. Стёпин. — 2-е изд., испр. и доп. — М. : Мысль, 2010. — 2816 с.
- Добровольский В. А. Д’Аламбер. — М.: Знание, 1968. — 32 с.
- История математики под редакцией А. П. Юшкевича, в 3 т. — М.: Наука.
- Том 2 Математика XVII столетия. (1970)
- Том 3 Математика XVIII столетия. (1972)
- Избранная переписка Даламбера и Екатерины II. // Исторический вестник. № 4, 1884.
- История в энциклопедии Дидро и Д’Аламбера. — Л.: Наука, 1978. — 318 с. — (Серия «Памятники исторической мысли»).
- Колчинский И. Г., Корсунь А. А., Родригес М. Г. Астрономы: Биографический справочник. — 2-е изд., перераб. и доп. — Киев: Наукова думка, 1986. — 512 с.
- Т. Мор. Оуэн. Дидро. Д’Аламбер. Кондорсе. Биографические повествования. — Челябинск: Урал ЛТД, 1998. — 490 с. — (Серия: Жизнь замечательных людей. Биографическая библиотека Флорентия Павленкова). — ISBN 5-88294-088-5
- Джон Дж. О’Коннор и Эдмунд Ф. Робертсон. Д’Аламбер, Жан Лерон (англ.) — биография в архиве MacTutor. (англ.)
- Литвинова Е. Ф. Даламбер, его жизнь и научная деятельность : С портр. Даламбера, грав. в Лейпциге Геданом — СПб, 1891. — 80 с., 1 л. фронт. (портр.) — (Жизнь замечательных людей. Биографическая библиотека Ф. Павленкова)
- Hall, Evelyn Beatrice. The Friends of Voltaire. — Smith, Elder & Co., 1906.
- Hankins, Thomas L. Jean d'Alembert: Science and the Enlightenment (англ.). — New York: Gordon and Breach, 1990. — ISBN 978-2-88124-399-8.
Ссылки
[править | править код]- Аламбер, Жан // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890. — Т. I. — С. 350.
- Ф. М. Менцов. Д'Аламбер // Энциклопедический лексикон: В 17 т. — СПб.: Тип. А. Плюшара, 1838. — Т. XV: ГОР—ДАШ. — С. 307—308.
- Д’Аламбер, Жан Лерон — Биография. Библиография. Высказывания