Остаточно конечная группа — Википедия

Остаточно конечная или финитно аппроксимируемая группа — группа такая, что для любого элемента найдётся гомоморфизм в конечную группу , удовлетворяющий условию .

  • Теорема Мальцева.[2] Всякая конечно порождённая подгруппа общей линейной группы является остаточно конечной.
  • Подгруппа остаточно конечной группы является остаточно конечной.
  • Прямое произведение остаточно конечных групп является остаточно конечным.
  • Обратный предел остаточно конечных групп является остаточно конечным.
  • Любая конечно порожденная остаточно конечная группа является хопфовой, то есть не имеет собственных факторгрупп, изоморфных ей самой.

Литература

[править | править код]
  1. Stephen Meskin, Nonresidually Finite One-Relator Groups.
  2. A. I. Mal'cev, "On the faithful representation of infinite groups by matrices" Transl. Amer. Math. Soc. (2) , 45 (1965) pp. 1–18