Формальная грамматика — Википедия

Формальная грамматика или просто грамматика в теории формальных языков — способ описания формального языка, то есть выделения некоторого подмножества из множества всех слов некоторого конечного алфавита. Различают порождающие и распознающие (или аналитические) грамматики — первые задают правила, с помощью которых можно построить любое слово языка, а вторые позволяют по данному слову определить, входит ли оно в язык или нет.

  • Терминал (терминальный символ) — объект, непосредственно присутствующий в словах языка, соответствующего грамматике, и имеющий конкретное, неизменяемое значение (обобщение понятия «буквы»). В формальных языках, используемых на компьютере, в качестве терминалов обычно берут все или часть стандартных символов ASCII — латинские буквы, цифры и спецсимволы.
  • Нетерминал (нетерминальный символ) — объект, обозначающий какую-либо сущность языка (например: формула, арифметическое выражение, команда) и не имеющий конкретного символьного значения.

Порождающие грамматики

[править | править код]

Словами языка, заданного грамматикой, являются все последовательности терминалов, выводимые (порождаемые) из начального нетерминала по правилам вывода.

Чтобы задать грамматику, требуется задать алфавиты терминалов и нетерминалов, набор правил вывода, а также выделить в множестве нетерминалов начальный.

Итак, грамматика определяется следующими характеристиками:

  •  — набор (алфавит) терминальных символов
  • N — набор (алфавит) нетерминальных символов
  • P — набор правил вида: «левая часть» «правая часть», где:
    • «левая часть» — непустая последовательность терминалов и нетерминалов, содержащая хотя бы один нетерминал
    • «правая часть» — любая последовательность терминалов и нетерминалов
  • S — стартовый (или начальный) символ грамматики из набора нетерминалов.

Выводом называется последовательность строк, состоящих из терминалов и нетерминалов, где первой идет строка, состоящая из одного стартового нетерминала, а каждая последующая строка получена из предыдущей путём замены некоторой подстроки по одному (любому) из правил. Конечной строкой является строка, полностью состоящая из терминалов, и следовательно являющаяся словом языка.

Существование вывода для некоторого слова является критерием его принадлежности к языку, определяемому данной грамматикой.

Типы грамматик

[править | править код]

По иерархии Хомского, грамматики делятся на 4 типа, каждый последующий является более ограниченным подмножеством предыдущего (но и легче поддающимся анализу):

Кроме того, выделяют:

  • Неукорачивающиеся грамматики. Каждое правило такой грамматики имеет вид , где . Длина правой части правила не меньше длины левой[1].
  • Линейные грамматики. Каждое правило такой грамматики имеет вид , или , то есть в правой части правила может содержаться не более одного вхождения нетерминала[2].

Применение

[править | править код]

Пример — арифметические выражения

[править | править код]

Рассмотрим простой язык, определяющий ограниченное подмножество арифметических формул, состоящих из натуральных чисел, скобок и знаков арифметических действий. Стоит заметить, что здесь в каждом правиле с левой стороны от стрелки стоит только один нетерминальный символ. Такие грамматики называются контекстно-свободными.

Терминальный алфавит:

 = {'0','1','2','3','4','5','6','7','8','9','+','-','*','/','(',')'} 

Нетерминальный алфавит:

  { ФОРМУЛА, ЗНАК, ЧИСЛО, ЦИФРА } 

Правила:

1. ФОРМУЛА  ФОРМУЛА ЗНАК ФОРМУЛА                (формула есть две формулы, соединенные знаком) 2. ФОРМУЛА  ЧИСЛО                               (формула есть число) 3. ФОРМУЛА  ( ФОРМУЛА )                         (формула есть формула в скобках) 4. ЗНАК  + | - | * | /                          (знак есть плюс или минус, или умножить, или разделить) 5. ЧИСЛО  ЦИФРА                                 (число есть цифра) 6. ЧИСЛО  ЧИСЛО ЦИФРА                           (число есть число и цифра) 7. ЦИФРА  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 (цифра есть 0 или 1, или ... 9 ) 

Начальный нетерминал:

ФОРМУЛА 

Вывод:

Выведем формулу (12+5) с помощью перечисленных правил вывода. Для наглядности, стороны каждой замены показаны попарно, в каждой паре заменяемая часть подчеркнута.

ФОРМУЛА (ФОРМУЛА)
(ФОРМУЛА) (ФОРМУЛА ЗНАК ФОРМУЛА)
(ФОРМУЛА ЗНАК ФОРМУЛА) (ФОРМУЛА + ФОРМУЛА)
(ФОРМУЛА + ФОРМУЛА) (ФОРМУЛА + ЧИСЛО)
(ФОРМУЛА + ЧИСЛО) (ФОРМУЛА + ЦИФРА)
(ФОРМУЛА + ЦИФРА) (ФОРМУЛА + 5)
(ФОРМУЛА + 5) (ЧИСЛО + 5)
(ЧИСЛО + 5) (ЧИСЛО ЦИФРА + 5)
(ЧИСЛО ЦИФРА + 5) (ЦИФРА ЦИФРА + 5)
(ЦИФРА ЦИФРА + 5) (1 ЦИФРА + 5)
(1 ЦИФРА + 5) (1 2 + 5)


Аналитические грамматики

[править | править код]

Порождающие грамматики — не единственный вид грамматик, однако наиболее распространенный в приложениях к программированию. В отличие от порождающих грамматик, аналитическая (распознающая) грамматика задает алгоритм, позволяющий определить, принадлежит ли данное слово языку. Например, любой регулярный язык может быть распознан при помощи грамматики, задаваемой конечным автоматом, а любая контекстно-свободная грамматика — с помощью автомата со стековой памятью. Если слово принадлежит языку, то такой автомат строит его вывод в явном виде, что позволяет анализировать семантику этого слова.

Примечания

[править | править код]

Литература

[править | править код]
  • Белоусов А. И., Ткачев С. Б. Дискретная математика. — М.: МГТУ, 2006. — 743 с. — ISBN 5-7038-2886-4.
  • Гладкий А. В. Формальные грамматики и языки. — М.: Наука, 1973.
  • Касьянов В. Н. Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995. — 112 с.
  • Хомский Н., Миллер Дж. Введение в формальный анализ естественных языков // Кибернетический сборник / Под ред. А.А.Ляпунова и О.Б.Лупанова. — М.: Мир, 1965.
  • Гросс М., Лантен А. Теория формальных грамматик. — М.: Мир, 1971. — 296 с.