Окрестность — Википедия

На плоскости подмножество является окрестностью точки , если вокруг точки можно нарисовать небольшой диск, который будет целиком содержаться в .
Прямоугольник не может являться окрестностью своих вершин.

Окре́стность точки — множество, содержащее данную точку и близкие (в каком-либо смысле) к ней. В разных разделах математики это понятие определяется по-разному.

Определения

[править | править код]

Математический анализ

[править | править код]

Пусть произвольное фиксированное число.

Окрестностью точки на числовой прямой (иногда говорят -окрестностью) называется множество точек, удаленных от менее чем на , то есть .

В многомерном случае функцию окрестности выполняет открытый -шар с центром в точке .

В банаховом пространстве окрестностью с центром в точке называют множество .

В метрическом пространстве окрестностью с центром в точке называют множество .

Общая топология

[править | править код]

Пусть задано топологическое пространство , где  — произвольное множество, а  — определённая на топология.

  • Множество называется окрестностью точки , если существует открытое множество такое, что .
  • Аналогично окрестностью множества называется такое множество , что существует открытое множество , для которого выполнено .
  • Приведённые выше определения не требуют, чтобы окрестность была открытым множеством, но лишь чтобы она содержала открытое множество . Некоторые авторы настаивают на том, что любая окрестность открыта.[1] Тогда окрестностью множества называется любое содержащее его открытое множество. Это не принципиальное для развития дальнейшей топологической теории различие. Однако в каждом случае важно фиксировать терминологию.
  • Окрестностью множества точек называется такое множество , что есть окрестность любой точки .

Пусть дана вещественная прямая со стандартной топологией. Тогда является открытой окрестностью, а  — замкнутой окрестностью точки .

Вариации и обобщения

[править | править код]

Проколотая окрестность

[править | править код]

Проколотой окрестностью точки называется окрестность точки, из которой исключена эта точка.

Строго говоря, проколотая окрестность не является окрестностью точки, так как согласно определению окрестности окрестность должна включать и саму точку.

Формальное определение: Множество называется проколотой окрестностью (вы́колотой окрестностью) точки , если

где  — окрестность .

Примечания

[править | править код]
  1. Рудин, 1975, с. 13.

Литература

[править | править код]
  • Математическая Энциклопедия. — М.: Советская Энциклопедия, 1984. — Т. 4.
  • У.Рудин. Функциональный анализ. — М.: Мир, 1975.