MAPK3 — Википедия
MAPK3 («митоген-активируемая белковая киназа 3»; англ. mitogen-activated protein kinase 3; p44MAPK; ERK1) — цитозольная серин/треониновая протеинкиназа, семейства MAPK группы ERK[5], продукт гена MAPK3[6].
Структура
[править | править код]MAPK3 состоит из 379 аминокислот, молекулярная масса 43,1 кДа. Описано 3 изоформы белка, образующиеся в результате альтернативного сплайсинга.
Функция
[править | править код]MAPK3, или ERK1, — фермент семейства MAPK из группы киназ, регулируемых внеклеточными сигналами (ERK). Киназа отвечает на разнообразные внешние сигналы и вовлечёна во множество клеточных процессов, таких как пролиферация, клеточная дифференцировка, регуляция клеточного цикла. Активация киназы требует её фосфорилирования другими киназами, расположенными выше в сигнальном каскаде. После активации MAPK3 транслоцируется в клеточное ядро, где фосфорилирует ядерные мишени. Обнаружено несколько изоформы MAPK3, образующиеся в результате альтернативного сплайсинга[7].
Клиническое значение
[править | править код]Предполагается, что ген MAPK3 вместе с геном IRAK1 выключается под действием нескольких микроРНК, которые активируются, когда вирус гриппа Alphainfluenzavirus инфицирует лёгкие[8].
Сигнальные пути
[править | править код]Фармакологическое ингибирование ERK1/2 восстанавливает активность GSK3β и синтез белка в моделе туберозного склероза[9].
Взаимодействия
[править | править код]MAPK3 взаимодействует со следующими белками:
Примечания
[править | править код]- ↑ 1 2 3 GRCh38: Ensembl release 89: ENSG00000102882 - Ensembl, May 2017
- ↑ 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000063065 - Ensembl, May 2017
- ↑ Ссылка на публикацию человека на PubMed: Национальный центр биотехнологической информации, Национальная медицинская библиотека США.
- ↑ Ссылка на публикацию мыши на PubMed: Национальный центр биотехнологической информации, Национальная медицинская библиотека США.
- ↑ Thomas, Gareth M.; Huganir, Richard L. (2004-03-01). MAPK cascade signalling and synaptic plasticity. Nature Reviews Neuroscience. 5 (3): 173–183. doi:10.1038/nrn1346. ISSN 1471-003X. PMID 14976517. S2CID 205499891.
- ↑ García F, Zalba G, Páez G, Encío I, de Miguel C (1998-05-15). Molecular cloning and characterization of the human p44 mitogen-activated protein kinase gene. Genomics. 50 (1): 69–78. doi:10.1006/geno.1998.5315. PMID 9628824.
- ↑ Entrez Gene: MAPK3 mitogen-activated protein kinase 3 .
- ↑ Buggele WA, Johnson KE, Horvath CM (2012). Influenza A virus infection of human respiratory cells induces primary microRNA expression. J. Biol. Chem. 287 (37): 31027–40. doi:10.1074/jbc.M112.387670. PMC 3438935. PMID 22822053.
{{cite journal}}
: Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка) - ↑ Pal R, Bondar VV, Adamski CJ, Rodney GG, Sardiello M (2017). Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis. Sci. Rep. 7 (1): 4174. doi:10.1038/s41598-017-04528-5. PMC 5482840. PMID 28646232.
- ↑ Todd JL, Tanner KG, Denu JM (May 1999). Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway. J. Biol. Chem. 274 (19): 13271–80. doi:10.1074/jbc.274.19.13271. PMID 10224087.
- ↑ Muda M, Theodosiou A, Gillieron C, Smith A, Chabert C, Camps M, Boschert U, Rodrigues N, Davies K, Ashworth A, Arkinstall S (April 1998). The mitogen-activated protein kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity. J. Biol. Chem. 273 (15): 9323–9. doi:10.1074/jbc.273.15.9323. PMID 9535927.
- ↑ Kim DW, Cochran BH (February 2000). Extracellular signal-regulated kinase binds to TFII-I and regulates its activation of the c-fos promoter. Mol. Cell. Biol. 20 (4): 1140–8. doi:10.1128/mcb.20.4.1140-1148.2000. PMC 85232. PMID 10648599.
- ↑ Zhou X, Richon VM, Wang AH, Yang XJ, Rifkind RA, Marks PA (December 2000). Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras. Proc. Natl. Acad. Sci. U.S.A. 97 (26): 14329–33. doi:10.1073/pnas.250494697. PMC 18918. PMID 11114188.
- ↑ 1 2 Marti A, Luo Z, Cunningham C, Ohta Y, Hartwig J, Stossel TP, Kyriakis JM, Avruch J (January 1997). Actin-binding protein-280 binds the stress-activated protein kinase (SAPK) activator SEK-1 and is required for tumor necrosis factor-alpha activation of SAPK in melanoma cells. J. Biol. Chem. 272 (5): 2620–8. doi:10.1074/jbc.272.5.2620. PMID 9006895.
- ↑ 1 2 Butch ER, Guan KL (February 1996). Characterization of ERK1 activation site mutants and the effect on recognition by MEK1 and MEK2. J. Biol. Chem. 271 (8): 4230–5. doi:10.1074/jbc.271.8.4230. PMID 8626767.
- ↑ Elion EA (September 1998). Routing MAP kinase cascades. Science. 281 (5383): 1625–6. doi:10.1126/science.281.5383.1625. PMID 9767029. S2CID 28868990.
- ↑ Yung Y, Yao Z, Hanoch T, Seger R (May 2000). ERK1b, a 46-kDa ERK isoform that is differentially regulated by MEK. J. Biol. Chem. 275 (21): 15799–808. doi:10.1074/jbc.M910060199. PMID 10748187.
- ↑ 1 2 Zheng CF, Guan KL (November 1993). Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases. J. Biol. Chem. 268 (32): 23933–9. PMID 8226933.
- ↑ Pettiford SM, Herbst R (February 2000). The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP. Oncogene. 19 (7): 858–69. doi:10.1038/sj.onc.1203408. PMID 10702794.
- ↑ Saxena M, Williams S, Taskén K, Mustelin T (September 1999). Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase. Nat. Cell Biol. 1 (5): 305–11. doi:10.1038/13024. PMID 10559944. S2CID 40413956.
- ↑ Saxena M, Williams S, Brockdorff J, Gilman J, Mustelin T (April 1999). Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP). J. Biol. Chem. 274 (17): 11693–700. doi:10.1074/jbc.274.17.11693. PMID 10206983.
- ↑ Roux PP, Richards SA, Blenis J (July 2003). Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol. Cell. Biol. 23 (14): 4796–804. doi:10.1128/mcb.23.14.4796-4804.2003. PMC 162206. PMID 12832467.
- ↑ Zhao Y, Bjorbaek C, Moller DE (November 1996). Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases. J. Biol. Chem. 271 (47): 29773–9. doi:10.1074/jbc.271.47.29773. PMID 8939914.
- ↑ Mao C, Ray-Gallet D, Tavitian A, Moreau-Gachelin F (February 1996). Differential phosphorylations of Spi-B and Spi-1 transcription factors. Oncogene. 12 (4): 863–73. PMID 8632909.
Литература
[править | править код]- Peruzzi F, Gordon J, Darbinian N, Amini S (2002). Tat-induced deregulation of neuronal differentiation and survival by nerve growth factor pathway. J. Neurovirol. 8 Suppl 2 (2): 91–6. doi:10.1080/13550280290167885. PMID 12491158.
- Meloche S, Pouysségur J (2007). The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene. 26 (22): 3227–39. doi:10.1038/sj.onc.1210414. PMID 17496918.
- Ruscica M, Dozio E, Motta M, Magni P (2007), Modulatory Actions of Neuropeptide y on Prostate Cancer Growth: Role of MAP Kinase/ERK 1/2 Activatio, Modulatory actions of neuropeptide Y on prostate cancer growth: role of MAP kinase/ERK 1/2 activation, Advances In Experimental Medicine And Biology, vol. 604, pp. 96–100, doi:10.1007/978-0-387-69116-9_7, ISBN 978-0-387-69114-5, PMID 17695723