Dosya:Algebraicszoom.png - Vikipedi

Tam çözünürlük ((1.920 × 1.080 piksel, dosya boyutu: 2,01 MB, MIME tipi: image/png))


Özet

Açıklama
English: Visualisation of the (countable) field of algebraic numbers in the complex plane. Colours indicate degree of the polynomial the number is a root of (red = linear, i.e. the rationals, green = quadratic, blue = cubic, yellow = quartic...). Points becomes smaller as the integer polynomial coefficients become larger. View shows integers 0,1 and 2 at bottom right, +i near top.
Tarih
Kaynak I (Stephen J. Brooks (talk)) created this work entirely by myself.
Yazar Stephen J. Brooks (talk) Source code in C with OpenGL.
Diğer sürümler leadingcoeff.png

C source code

Here's the source code. OpenGL graphics stuff is mixed in with maths stuff. The mathematical routines are findroots_inner (arguments given in findroots) and precalc (returns a set of algebraic numbers in the Point structure, x+iy is the value, o is the order of the polynomial that produced them and h is the complexity measure of the polynomial). LSet is just a container object (like Vector<Complex> or Vector<Point> in C++). I is the complex number i. frnd(x) produces a random double-precision number on the interval [0,x). Blocks with FILE *out=fopen(...) are logfiles, can be removed if necessary.

#include <lset.c> #include <rnd/frnd.c>  char nonconv; int fq[5001];  void findroots_inner(Complex *c,const unsigned o,LSet *pr) { 	Complex r; 	if (o==1) 	{ 		r=-c[0]/c[1]; 		LSet_add(pr,&r); 		return; 	} 	int n; Complex f,d,p,or; 	r=frnd(2)-1+I*(frnd(2)-1); int i=0,j=0; // Complex h[1000]; 	do 	{ if (j==500) {r=frnd(2)-1+I*(frnd(2)-1); j=0;} else j++; if (i>=5000) {nonconv=1; break;} /*{ 	FILE *out=fopen("5000iters.log","at"); 	fprintf(out,"-----\n"); 	//for (i=0;i<1000;i++) fprintf(out,"h[%d]=%lg+%lgi\n",i,h[i].re,h[i].im); 	fclose(out); 	break; }*/ //else h[i]=r; i++; 		or=r; f=0; d=0; p=1; 		for (n=0;n<o;n++,p*=r) 		{ 			f+=p*c[n]; 			d+=p*c[n+1]*(n+1); 		} 		f+=p*c[o]; 		r-=f/d; 	} 	while (modsquared(r-or)>1e-20); fq[i]++; 	LSet_add(pr,&r); 	for (n=o;n>0;n--) c[n-1]+=r*c[n]; 	for (n=0;n<o;n++) c[n]=c[n+1]; 	findroots_inner(c,o-1,pr); }  Complex *findroots(Complex *c,const unsigned o) { // c[0] to c[o] are coeffs of 1 to x^o; c is destroyed, return value is created 	LSet r=LSet(Complex); 	findroots_inner(c,o,&r); 	free(c); 	return r.a; }  #include <graphics.c> #include <rnd/eithertime.c> #include <rnd/sq.c> #include <rnd/Mini.c>  GLuint othertex(const unsigned sz) { 	GLuint ret; glGenTextures(1,&ret); 	glBindTexture(GL_TEXTURE_2D,ret); 	glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_LINEAR); 	glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR); 	//aniso(); 	int n,x,y,xs=sz,ys=sz; 	unsigned char *td=malloc(xs*ys*3); float f; 	for (y=ys-1;y>=0;y--) for (x=xs-1;x>=0;x--) 	{ 		n=(y*xs+x)*3; 		f=sq((float)sz/2)/(1+sq((float)x-xs/2)+sq((float)y-ys/2)); 		td[n]=td[n+1]=td[n+2]=Mini(0xFF,f); 	} 	gluBuild2DMipmaps(GL_TEXTURE_2D,3,xs,ys,GL_RGB,GL_UNSIGNED_BYTE,td); 	free(td); 	return ret; }  void putblob(const float x,const float y,const float r) { 	glTexCoord2f(1,1); glVertex2f(x+r*16,y+r*16); 	glTexCoord2f(1,0); glVertex2f(x+r*16,y-r*16); 	glTexCoord2f(0,0); glVertex2f(x-r*16,y-r*16); 	glTexCoord2f(0,1); glVertex2f(x-r*16,y+r*16); }  typedef struct {double x,y; int h,o;} Point;  LSet precalc(const int maxh) { 	LSet ret=LSet(Point); Point p; 	int h,i,j,k,nz,l,sp; for (i=0;i<=5000;i++) fq[i]=0; 	int temps=0,eqns=0,roots=0; 	for (h=2;h<=maxh;h++) // Complexity measure sum(|c_n|+1) 	{ 		p.h=h; 		int *t=malloc(h*sizeof(int)); 		for (i=(1<<(h-1))-1;i>=0;i-=2) // 2 step stops t[k-1] being zero 		{ 			t[0]=0; 			for (j=h-2,k=0;j>=0;j--) 				if ((i>>j)&1) t[k]++; else {k++; t[k]=0;} 			temps++; 			if (k==0) continue; // k is the order 			p.o=k; 			//p.o=t[k]; 			nz=0; 			for (j=k;j>=0;j--) if (t[j]!=0) nz++; 			for (j=(1<<(nz-1))-1;j>=0;j--) // Signs loop 			{ 				Complex *c=malloc((k+1)*sizeof(Complex)); 				for (l=k,sp=1;l>=0;l--) 					if (t[l]==0 || l==k) c[l]=t[l]; 					else {c[l]=(j&sp?t[l]:-t[l]); sp<<=1;} 				eqns++; 					nonconv=0; Complex *cc=malloc((k+1)*sizeof(Complex)); memcpy(cc,c,(k+1)*sizeof(Complex)); 				c=findroots(c,k); 					if (!nonconv) 				for (l=k-1;l>=0;l--) 				{ 					roots++; 					p.x=c[l].re; p.y=c[l].im; 					LSet_add(&ret,&p); 				} 					else 				{ 					FILE *out=fopen("nonconv.log","at"); 					for (l=k;l>=0;l--) fprintf(out,"%+lg*z^%d%s",cc[l].re,l,(l?"":"\n")); 					fclose(out); 				} 				free(c); free(cc); 			} 		} 		free(t); 	} 	FILE *out=fopen("stats.txt","at"); 	fprintf(out,"temps=%d eqns=%d roots=%d\n",temps,eqns,roots); 	fclose(out); out=fopen("histoiters.csv","wt"); for (i=0;i<=5000;i++) fprintf(out,"%d,%d\n",i,fq[i]); fclose(out); 	return ret; }  WINMAIN { 	int n; gl_ortho=1; 	GRAPHICS(0,0,"Algebraic numbers [Stephen Brooks 2010]"); 	GLuint tex=othertex(256),list=0; 	double ox=0,oy=0,zoom=yres/5,k1=0.125,k2=0.5; 	SetCursorPos(xres/2,yres/2); 	double ot=eithertime(); 	LSet ps=precalc(15); 	LOOP 	{ 		double dt=eithertime()-ot; ot=eithertime(); 		ox+=(mx-xres/2)/zoom; oy+=(my-yres/2)/zoom; 		if (KEY(VK_O)) ox=oy=0; 		SetCursorPos(xres/2,yres/2); 		if (mb&1) zoom*=exp(dt*3); if (mb&2) zoom*=exp(-dt*3); 		if (KHIT(VK_Z)) {k1*=1.3; glDeleteLists(list,1); list=0;} 		if (KHIT(VK_X)) {k1/=1.3; glDeleteLists(list,1); list=0;} 		if (KHIT(VK_C)) {k2+=0.05; glDeleteLists(list,1); list=0;} 		if (KHIT(VK_V)) {k2-=0.05; glDeleteLists(list,1); list=0;} 		glMatrixMode(GL_MODELVIEW); 		glPushMatrix(); 		glScaled(zoom,zoom,zoom); 		glTranslated((xres/2/zoom)-ox,(yres/2/zoom)-oy,0); 		if (!list) 		{ 			list=glGenLists(1); glNewList(list,GL_COMPILE_AND_EXECUTE); 		glEnable(GL_BLEND); 		glBlendFunc(GL_ONE,GL_ONE); 		glDisable(GL_DEPTH_TEST); 		glEnable(GL_TEXTURE_2D); 		glBindTexture(GL_TEXTURE_2D,tex); 		glBegin(GL_QUADS); 		Point *p=ps.a; 		for (n=ps.m-1;n>=0;n--) 		{ 			switch (p[n].o) 			{ 				case 1: glColor3f(1,0,0); break; 				case 2: glColor3f(0,1,0); break; 				case 3: glColor3f(0,0,1); break; 				case 4: glColor3f(0.7,0.7,0); break; 				case 5: glColor3f(1,0.6,0); break; 				case 6: glColor3f(0,1,1); break; 				case 7: glColor3f(1,0,1); break; 				case 8: glColor3f(0.6,0.6,0.6); break; 				default: glColor3f(1,1,1); break; 			} 			putblob(p[n].x,p[n].y,k1*pow(k2,p[n].h-3)); 		} 		glEnd(); 			ot=eithertime(); 			glEndList(); 		} 		else if (list) glCallList(list); 		if (KEY(VK_L)) {glDeleteLists(list,1); list=0;} 		if (KEY(VK_CONTROL) && KHIT(VK_S)) screenshotauto(); 		glMatrixMode(GL_MODELVIEW); 		glPopMatrix(); 		ccl(); 	} } 

Lisanslama

Ben, bu işin telif sahibi, burada işi aşağıdaki lisans altında yayımlıyorum:
w:tr:Creative Commons
atıf
Bu dosya, Creative Commons Atıf 3.0 Uluslararası lisansı ile lisanslanmıştır
Şu seçeneklerde özgürsünüz:
  • paylaşım – eser paylaşımı, dağıtımı ve iletimi
  • içeriği değiştirip uyarlama – eser adaptasyonu
Aşağıdaki koşullar geçerli olacaktır:
  • atıf – Esere yazar veya lisans sahibi tarafından belirtilen (ancak sizi ya da eseri kullanımınızı desteklediklerini ileri sürmeyecek bir) şekilde atıfta bulunmalısınız.

Altyazılar

Bu dosyanın temsil ettiği şeyin tek satırlık açıklamasını ekleyin.
This image shows algebraic numbers on the complex plane, colored by degree. Red = linear, green = quadratic, blue = cubic, yellow = quartic.

Bu dosyada gösterilen öğeler

betimlenen

23 Mart 2010

image/png

c64a47c1f6b36bee273e95949394d0309ec88265

2.103.680 bayt

1.080 piksel

1.920 piksel

Dosya geçmişi

Dosyanın herhangi bir zamandaki hâli için ilgili tarih/saat kısmına tıklayın.

Tarih/SaatKüçük resimBoyutlarKullanıcıYorum
güncel21.48, 27 Mart 201021.48, 27 Mart 2010 tarihindeki sürümün küçültülmüş hâli1.920 × 1.080 (2,01 MB)Stephen J. Brooks{{Information |Description = Visualisation of the (countable) field of algebraic numbers in the complex plane. Colours indicate degree of the polynomial the number is a root of (red = linear, i.e. the rationals, green = quadratic, blue = cubic, yello

Bu görüntü dosyasına bağlantısı olan sayfalar:

Küresel dosya kullanımı

Aşağıdaki diğer vikiler bu dosyayı kullanır: