Nusselt sayısı - Vikipedi

Termal akışkan dinamiği alanında, Nusselt sayısı (Nu), Wilhelm Nusselt'in adını taşıyan ve bir sınır tabakasındaki toplam ısı transferinin, kondüksiyon ısı transferine oranını ifade eden bir boyutsuz sayıdır. Toplam ısı transferi, kondüksiyon ve konveksiyonu içerir. Konveksiyon ise adveksiyon ve difüzyon bileşenlerinden oluşur. Kondüktif bileşen, konvektif koşullar altında ancak hareketsiz bir akışkan için varsayılarak ölçülür. Nusselt sayısı, akışkanın Rayleigh sayısı ile yakından ilişkilidir.[1]:466

Nusselt sayısının bir büyüklüğündeki mertebesi, saf kondüksiyonla ısı transferini temsil ederken, bir ile 10 arasındaki değerler tıkız akış (İng. slug flow) veya laminer akışa özgüdür.[2] Daha yüksek Nusselt sayıları daha aktif konveksiyon anlamına gelir ve türbülanslı akış genellikle 100-1000 aralığında bulunur.[2]

Benzer şekilde, Biot sayısı katı cisimler için ısı iletkenliğini ele alırken, Nusselt sayısının kütle transferi karşılığı Sherwood sayısıdır.

Nusselt sayısı, bir sınır tabakası boyunca toplam ısı transferinin (kondüksiyon + konveksiyon) kondüksiyon ısı transferine oranıdır. Konveksiyon ve kondüksiyon ısı akışları, sınır tabakası yüzeyinin normaline paralel olup, ortalama akışkan akışına dik olarak gerçekleşir.

Burada h, akışın konvektif ısı transferi katsayısını, L karakteristik uzunluğu ve k akışkanın ısı iletkenliğini temsil eder.

  • Karakteristik uzunluğun seçimi, sınır tabakasının büyüme veya kalınlık yönünde olmalıdır; karakteristik uzunluk örnekleri şunlardır: silindirin eksenine dik olarak çapraz akışta (İng. cross flow) bir silindirin dış çapı, doğal konveksiyona maruz kalan dikey bir plakanın uzunluğu veya bir kürenin çapı. Karmaşık geometriler için uzunluk, akışkan cismin hacminin yüzey alanına bölünmesiyle tanımlanabilir.
  • Akışkanın ısı iletkenliği genellikle film sıcaklığında değerlendirilir ve mühendislik uygulamaları için bu, yığın (İng. bulk) akışkan sıcaklığı ile duvar yüzey sıcaklığının aritmetik ortalaması olarak hesaplanabilir.

Yukarıda verilen tanımın aksine, "ortalama Nusselt sayısı" olarak bilinen yerel Nusselt sayısı, uzunluğun yüzey sınırından[1] ilgi noktasına olan mesafe olarak alınmasıyla tanımlanır.

"Olağan" ya da "ortalama" Nusselt sayısı, ilgi alanı boyunca bu ifadenin entegrasyonu ile elde edilir, örneğin:[3]

Bir yüzey ile üzerinden akışkan akan bir akışkan arasında konvektif ısı transferini anlamak için konveksiyon sınır tabakalarının anlaşılması gereklidir. Akışkan serbest akım sıcaklığı ile yüzey sıcaklıkları farklı olduğunda bir termal sınır tabakası oluşur. Bu sıcaklık farkından kaynaklanan enerji değişimi nedeniyle bir sıcaklık profili ortaya çıkar.

Termal Sınır Tabakası

Isı transfer oranı, Newton soğuma yasası kullanılarak şu şekilde ifade edilebilir:

,

burada h ısı transfer katsayısı ve A ısı transfer yüzey alanıdır. Yüzeydeki ısı transferi iletim yoluyla gerçekleştiğinden, aynı miktar ısı iletkenliği k cinsinden şu şekilde ifade edilebilir:

.

Bu iki terim eşittir ve bu nedenle

.

Bu ifadeyi yeniden düzenleyerek,

.

Temsili bir uzunluk L ile çarptığımızda boyutsuz bir ifade elde ederiz:

.

Sağ taraf artık yüzeydeki sıcaklık gradyanının referans sıcaklık gradyanına oranını temsil ederken, sol taraf Biot modülüne benzer. Bu ifade, iletken termal direncin, akışkanın konvektif termal direncine oranı olan Nusselt sayısı, Nu olarak bilinir.

.

Nusselt sayısı, Fourier kanununun boyutsuz bir analizi ile elde edilebilir çünkü bu sayı, yüzeydeki boyutsuz sıcaklık gradyanına eşittir:

, burada q ısı akımı, k sabit ısı iletkenliği ve T akışkan sıcaklığıdır.

Eğer: ve olursa,

şuraya varırız:

sonra aşağıdaki tanımlamayı yapabiliriz:

bu nedenle denklem şu hale gelir:

Cismin yüzeyi üzerinde entegrasyon yaparak aşağıdaki sonucu elde edebiliriz:

,

burada 'dir.

Ampirik korelasyonlar

[değiştir | kaynağı değiştir]

Genellikle doğal konveksiyon (zorlanmamış konveksiyon; İng. free convection) için, ortalama Nusselt sayısı Rayleigh sayısı ve Prandtl sayısının bir fonksiyonu olarak ifade edilir ve şu şekilde yazılır:

Zorlanmış konveksiyon durumunda ise, Nusselt sayısı genellikle Reynolds sayısı ve Prandtl sayısının bir fonksiyonu olarak ifade edilir:

Doğal konveksiyon

[değiştir | kaynağı değiştir]

Dikey bir duvarda doğal konveksiyon

[değiştir | kaynağı değiştir]

Churchill ve Chu'dan alıntılanmıştır[4]:493:

Yatay plakadan doğal konveksiyon

[değiştir | kaynağı değiştir]

Eğer karakteristik uzunluk şu şekilde tanımlanırsa

burada plakanın yüzey alanı ve çevresidir.

Daha soğuk bir ortamda sıcak bir cismin üst yüzeyi veya daha sıcak bir ortamda soğuk bir cismin alt yüzeyi için[4]:493

Daha soğuk bir ortamda sıcak bir cismin alt yüzeyi veya daha sıcak bir ortamda soğuk bir cismin üst yüzeyi için[4]:493

Alttan ısıtılan bir muhafazadan doğal konveksiyon

[değiştir | kaynağı değiştir]

Bejan'dan alıntılanmıştır:[5]

Bu denklem "yatay tabakanın yeterince geniş olduğu durumlarda, kısa dikey kenarların etkisinin minimal olması durumunda geçerlidir."

Bu, 1959'da Globe ve Dropkin tarafından ampirik olarak belirlenmiştir:[6] "Testler, bakır üst ve alt kısımları olan ve yalıtımlı duvarlara sahip silindirik kaplarda yapılmıştır." Kullanılan kaplar yaklaşık 5 inç çapında ve 2 inç yüksekliğindeydi.

Laminer akışta düz plaka

[değiştir | kaynağı değiştir]

Bir düz plaka üzerinde laminer akış için yerel Nusselt sayısı, plakanın kenarından aşağı yönde mesafesinde şu şekilde verilir[4]:490:

Bir düz plaka üzerinde laminer akış için ortalama Nusselt sayısı, plakanın kenarından aşağı yönde mesafesine kadar şu şekilde verilir[4]:490:

Konvektif akışta küre

[değiştir | kaynağı değiştir]

Bazı uygulamalarda, örneğin hava içindeki küresel sıvı damlacıklarının buharlaşması gibi, şu korelasyon kullanılır:[7]

Türbülanslı boru akışında zorlanmış konveksiyon

[değiştir | kaynağı değiştir]

Gnielinski korelasyonu

[değiştir | kaynağı değiştir]

Gnielinski'nin türbülanslı boru akışı için korelasyonu:[4]:{{{1}}}[8]

Burada f, Darcy sürtünme faktörüdür ve Moody çizelgesinden veya Petukhov tarafından geliştirilen korelasyondan elde edilebilir:[4]:490

Gnielinski Korelasyonu şu durumlar için geçerlidir:[4]:490

Dittus–Boelter denklemi

[değiştir | kaynağı değiştir]

W.H. McAdams tarafından tanıtılan Dittus–Boelter denklemi (türbülanslı akış için) Nusselt sayısını hesaplamak için bir belirtik fonksiyondur (İng. explicit). Çözülmesi kolaydır ancak akışkan boyunca büyük sıcaklık farkları olduğunda daha az doğrudur. Dittus–Boelter denklemi pürüzsüz borular için uyarlanmıştır, bu nedenle pürüzlü borular (çoğu ticari uygulamada) için dikkatli kullanılmalıdır. Dittus–Boelter denklemi aşağıdaki gibidir:

Burada:

dairesel kanalın iç çapıdır
Prandtl sayısıdır
akışkan ısıtıldığında ve akışkan soğutulduğunda kullanılır.[4]:493

Dittus–Boelter denklemi şu durumlar için geçerlidir[4]:514

Dittus–Boelter denklemi, kütlesel akışkan ile ısı transfer yüzeyi arasındaki sıcaklık farklarının minimal olduğu durumlarda iyi bir yaklaşımdır ve denklem karmaşıklığından ve yinelemeli çözümden kaçınır. Ortalama kütlesel akışkan sıcaklığı 20 °C (68 °F) olan suyu, viskozite 10,07×10-4 Pa.s ve ısı transfer yüzey sıcaklığı 40 °C (104 °F) olan bir durumda (viskozite 6,96×10-4 Pa.s, viskozite düzeltme faktörü olarak 1.45 elde edilebilir. Bu, ısı transfer yüzey sıcaklığı 100 °C (212 °F) olduğunda (viskozite 2,82×10-4 Pa.s) 3.57'ye çıkarak Nusselt sayısı ve ısı transfer katsayısı üzerinde önemli bir fark yaratır.

Sieder–Tate korelasyonu

[değiştir | kaynağı değiştir]

Sieder–Tate korelasyonu türbülanslı akış için bir örtük fonksiyondur (İng. implicit), çünkü sistemi doğrusal olmayan bir sınır değer problemi olarak analiz eder. Sieder–Tate sonucu, kütlesel akışkan ortalama sıcaklığı ile ısı transfer yüzey sıcaklığı arasındaki sıcaklık değişiminden dolayı viskozitedeki ( ve ) değişikliği dikkate aldığı için daha doğru olabilir. Sieder–Tate korelasyonu normalde yinelemeli bir süreçle çözülür, çünkü Nusselt sayısı değiştikçe viskozite faktörü de değişir.[9]

[4]:493

Burada:

kütlesel akışkan sıcaklığındaki akışkan viskozitesidir
ısı transfer sınır yüzey sıcaklığındaki akışkan viskozitesidir

Sieder–Tate korelasyonu şu durumlar için geçerlidir[4]:493

Tam gelişmiş laminer boru akışında zorlanmış konveksiyon

[değiştir | kaynağı değiştir]

Tam gelişmiş iç laminer akışlı uzun borular için Nusselt sayıları sabit bir değere eğilim gösterir.

İç akış için:

Burada:

Dh = Hidrolik çap
kf = akışkanın ısı iletkenliği
h = konvektif ısı transfer katsayısıdır.

Dairesel borular için sabit sıcaklık ile konveksiyon

[değiştir | kaynağı değiştir]

Incropera & DeWitt'e göre,[4]:486-487

OEIS dizisi bu değeri şu şekilde verir: .

Dairesel borular için sabit ısı akısı ile konveksiyon

[değiştir | kaynağı değiştir]

Sabit yüzey ısı akısı durumu için,[4]:486-487

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  1. ^ a b Çengel, Yunus A. (2002). Heat and Mass Transfer. 2nd. McGraw-Hill. 
  2. ^ a b "The Nusselt Number". Whiting School of Engineering. 1 Nisan 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 3 Nisan 2019. 
  3. ^ E. Sanvicente; ve diğerleri. (2012). "Transitional natural convection flow and heat transfer in an open channel". International Journal of Thermal Sciences. Cilt 63. ss. 87-104. doi:10.1016/j.ijthermalsci.2012.07.004. 
  4. ^ a b c d e f g h i j k l m n Incropera, Frank P.; DeWitt, David P. (2007). Fundamentals of Heat and Mass TransferSınırlı deneme süresince özgürce erişilebilir, normalde ise abonelik gereklidir. 6th. Hoboken: Wiley. ISBN 978-0-471-45728-2. 
  5. ^ Bejan, Adrian (2013). Convection Heat TransferSınırlı deneme süresince özgürce erişilebilir, normalde ise abonelik gereklidir (PDF). 4th. Wiley. ISBN 978-0-470-90037-6. 
  6. ^ Globe, Samuel; Dropkin, David (1959). "Natural-Convection Heat Transfer in Liquids Confined by Two Horizontal Plates and Heated From Below". J. Heat Transfer. 81 (1). ss. 24-28. 25 Mart 2024 tarihinde kaynağından arşivlendi. Erişim tarihi: 7 Haziran 2024 – ASME Digital Collection vasıtasıyla. 
  7. ^ McAllister, Sara; Chen, Jyh-Yuan; Fernández Pello, Carlos (2011). "Droplet Vaporization in Convective Flow". Fundamentals of combustion processes. Mechanical Engineering. New York: Springer. s. 159. doi:10.1007/978-1-4419-7943-8. ISBN 978-1-4419-7942-1. LCCN 2011925371. 
  8. ^ Gnielinski, Volker (1975). "Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren und Kanälen". Forsch. Ing.-Wes. 41 (1). ss. 8-16. doi:10.1007/BF02559682. 
  9. ^ "Temperature Profile in Steam Generator Tube Metal" (PDF). 3 Mart 2016 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 23 Eylül 2009.