Сферичні гармоніки |
|
Формула | |
Позначення у формулі | , і |
Підтримується Вікіпроєктом | Вікіпедія:Проєкт:Математика |
Сферичні гармоніки у Вікісховищі |
Сфери́чні гармо́ніки — набір ортонормованих функцій двох кутових змінних і , які складають повний базис функцій сферичного кута.
Сферичні гармоніки позначаються , де l = 0,1,2…, а m пробігає значення від -l до l.
- ,
де - приєднані поліноми Лежандра.
Сферичні гармоніки є власними функціями оператора кутового моменту.
Множник в означенні сферичних гармонік вибирається з умови нормування
- ,
де інтегрування проводиться по повному сферичному куту, а - символ Кронекера.