Фукоїдан — Вікіпедія
Фукоїдан (fucoidan) — сульфатований гетерополісахарид, виявлений у складі бурих водоростей і деяких голкошкірих.
Вперше фукоїдани були виділені з бурих водоростей в 1913 році. Вміст фукоїданів може досягати 25-30% від сухої ваги водорості і залежить, в основному, від виду водорості, а також від сезону або стадії розвитку водорості, місця збору та інших факторів.
Попри те, що фукоїдани відомі давно, далеко не всі їхні структурні особливості з'ясовані з достатньою визначеністю. У першу чергу це відноситься до структури фрагментів, що включають мінорні моносахариди. Практично до 1993 р. вважалося, що основний ланцюг фукоїданів являє собою 1 → 2-α-L-фукан. В наш час[коли?] встановлено, що більшість відомих фукоїданів належить до двох структурних типів: перший тип містить в основному ланцюги: α-1→3-, другий тип: почергові α-1→3- і α-1→4- зв'язані залишки фукози. Розгалуження приєднані в положенні 2, а сульфатні групи можуть перебувати при С4 залишку фукози. Виділені фукоїдани, в яких сульфатні групи розташовані при С2, а також при С2 і С4. Крім того, відомі фукоїдани, в яких залишки фукози не тільки сульфатовані, а й ацетильовані.
Потрібно відзначити, що в більшості випадків встановлені структури фракцій фукоїданів, основним компонентом яких є фукоза. Ці полісахариди виділені з бурих водоростей, що належать до порядків Chordariales, Laminariales, Fucales. Бурі водорості, що належать порядкам Chordariales і Laminariales (Phaeosporophyceae), синтезують полісахариди, що складаються з α-1→3-пов'язаних залишків фукози. Основний ланцюг цих полісахаридів може мати розгалуження при С2 деяких залишків фукози (залишок D-GlcA (Cladosiphon okamuranus) або залишок Fuc (Chorda filum)). Основний ланцюг фукоїданів водоростей порядку Fucales (Cyclosporophyceae) побудований з почергових α-1→3- і α-1→4- пов'язаних залишків фукози, в результаті чого формується регулярна структура полісахаридного ланцюга. Проте в нативному фукоїдані ця регулярність маскується безладним розташуванням сульфатних і ацетатних груп. Можливо, що відмінності в структурі основного ланцюга фукоїданів пов'язані з різним механізмом біосинтезу цих полісахаридів у бурих водоростей, що належать Phaeosporophyceae і Cyclosporophyceae.
Фукансульфати морських їжаків Arbacia lixula, Lytechinus variegates і голотурії Ludwigothurea grisea складаються з повторюваних тетрасахаридних ланок і, на відміну від фукоїданів, мають чітко виражену регулярну лінійну структуру і не містять ацетатних груп.
Численні дослідження останніх 10-15 років присвячені біологічній дії фукоїданів. Фукоїдани проявляють надзвичайно широкий спектр біологічних активностей, що є причиною підвищеного інтересу до них. Так, в літературі є повідомлення про протипухлинні[1][2][3], імуномодулюючі[4][5], антибактеріальні[6][7], антивірусні[8][9], протизапальні та інші властивості фукоїданів. З цієї причини фукоїдани можна віднести до так званих «полівалентних біомодуляторів».
Особливий інтерес викликає антикоагулянтна дія фукоїданів. В наш час[коли?] відомі два механізми антикоагулянтної дії фукоїданів: один реалізується за допомогою прямого інгібування активності факторів VII, XI, XII згортання крові, другий заснований на гепариноподібному інгібуванні згортаючих факторів за допомогою активації специфічного ендогенного інгібітора — антитромбіну-III (АТ-III). Фукоїдани, що діють по першому механізму, можуть застосовуватися при антикоагулянтній терапії у хворих з вродженим або набутим дефіцитом антитромбіну АТ III, коли гепарин не ефективний. Структура фрагментів молекул фукоїданів, відповідальних за їх дію за першого або другого механізму, невідома. В даному випадку з'ясування відмінностей в структурі цих фрагментів набуває важливого значення.
Інтенсивність вивчення біологічної активності фукоїданів значно випереджає дослідження їх хімічної структури. Тому є небагато даних про зв'язок структури і біологічної активності цих полісахаридів. Вважається, що біологічна активність фукоїданів обумовлена в першу чергу ступенем сульфатування, наявністю фрагментів певної структури, також може бути пов'язана з моносахаридним складом, ступенем розгалуженості, типом зв'язку, молекулярно-масовим розподілом. Однак, незважаючи на всі зусилля, поки так і не вдалося з певною визначеністю встановити структурний мотив, який відповідає за прояв тієї чи іншої біологічної активності фукоїданів.
- ↑ Ellouali, M., Boisson-Vidal, C., Durand, P., Jozefonvicz, J., Antitumor activity of low molecular weight fucans extracted from brown seaweed Ascophyllum nodosum. Anticancer Res.1993, 13, 2011–2019.
- ↑ Maruyama, H., Nakajima, J., Yamamoto, I., A study on the anticoagulant and fibrinolytic activities of a crude fucoidan from the edible brown seaweed Laminaria religiosa, with special reference to its inhibitory effect on the growth of sarcoma-180 ascites cells subcutaneously implanted into mice. Kitasato Arch. Exp. Med. 1987, 60, 105–121.
- ↑ Yamamoto, I., Takahashi, M., Suzuki, T., Seino, H., et al., Antitumor effect of seaweeds. IV. Enhancement of antitumor activity by sulfation of a crude fucoidan fraction from Sargassum kjellmanianum. Jpn. J. Exp. Med. 1984, 54, 143–151.
- ↑ Zapopozhets, T.S., Besednova, N.N., Loenko, I.N., Antibacterial and immunomodulating activity of fucoidan. Antibiot. Khimioter. 1995, 40, 9-13.
- ↑ Zaporozhets, T.S., Kuznetsova, T.A., Smolina, T.P., Shevchenko, N.M., et al., Immunotropic and anticoagulant activity of fucoidan from brown seaweed Fucus evanescens: prospects of application in medicine. J. Microbiol. 2006, 54-58.
- ↑ Hirmo, S., Utt, M., Ringner, M., Wadstrom, T., Inhibition of heparan sulfate and other glycosaminoglycans binding to Helicobacter pylori by various polysulfated carbohydrates. FEMS Immunol. Med. Microbiol. 1995, 10, 301–306.
- ↑ Shibata, H., KimuraT., I., Nagaoka, M., Hashimoto, S. et al., Inhibitory effect of Cladosiphon fucoidan on the adhesion of Helicobacter pylori to human gastric cells. J. Nutr. Sci. Vitaminol. (Tokyo) 1999, 45, 325–336.
- ↑ Adhikari, U., Mateu, C.G., Chattopadhyay, K., Pujol, C.A. et al., Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry, 2006, 67, 2474–2482.
- ↑ McClure, M.O., Moore, J.P., Blanc, D.F., Scotting, P. et al., Investigations into the mechanism by which sulfated polysaccharides inhibit HIV infection in vitro. AIDS Res. Hum. Retroviruses 1992, 8, 19-26.
- Матеріали з Ру-вікі
- Застосування в медицині