一致連續又稱均勻連續,(英語:uniformly continuous),為數學分析的專有名詞,大致來講是描述對於函數 我們只要在定義域中讓任意兩點 跟 越來越接近,我們就可以讓 跟 無限靠近,這跟一般的連續函數不同之處在於: 跟 之間的距離並不依賴 跟 的位置選擇。 一致连续是比连续更苛刻的条件。一个函数在某度量空间上一致连续,则其在此度量空间上必然连续,但反之未必成立。
设 和 皆是度量空间,我們說函数 一致连续,這代表對任意的 ,存在 ,使得定義域中任意兩點 只要 ,就有 。
当 和 都是實數的子集合, 和 為絕對值 时,一致连续的定义可表述为:如果对任意的 ,存在 ,使得对任意兩點 ,都有 ,则稱函數 在 上一致连续。
均勻連續跟在每點連續最大的不同在於:在均勻連續定義中,正數 的選擇只依賴 這變數,而不依賴定義域上點的位置。
证明:
设函数,为紧致度量空间,为度量空间。
假设不是一致连续的,則存在一個,对于任意都存在满足条件并且。
因为为紧致度量空间,是序列紧致的,所以存在一个的收敛子序列,设其收敛到。
,所以。
因为连续,,矛盾,定理得证。
一致连续相比于连续是一个更强的结论。一般情况下,连续不意味着一致连续。