電台廣播 - 维基百科,自由的百科全书
此條目需要补充更多来源。 (2018年5月21日) |
電台廣播,又稱無線電廣播(英語:Radio broadcasting)、聲音廣播或收音機廣播,是以無線電波單向傳遞聲音資訊的方式,一般是以高頻廣播,透過大氣電波發送廣播頻率後,聽眾透過收音機來接收。其基本設施為廣播電台,中文常通稱為「電台」。
依使用的技術不同,電台廣播主要分為調幅廣播(AM)及調頻廣播(FM),另外還有常見於國際廣播的短波廣播。不同的電台廣播使用不同的的頻率範圍。大部分電台使用FM廣播,部分小規模電台則採用AM廣播。除大氣電波外,部分透過有線網絡、人造衛星(人造衛星廣播)和互聯網廣播。
歷史
[编辑]1896年,古列爾莫·馬可尼(Guglielmo Giovanni Maria Marconi)發明了無線電報,最早的無線電系統是無線電電報系統,其中沒有包括聲音。若要用電台廣播來傳送聲音,需要有偵測聲音的電子裝置以及信號放大的設備配合才行。
熱離子管是由英國科學家约翰·弗莱明在1904年發明的,他開發了一個設備,稱為「振動閥」(因為電流只能以單一方向通過此設備)。其中加熱燈絲(即陰極)可以以热发射的方式釋放電子,若對應的平板電極(即陽極)電壓較高,電子會流往陽極。而陽極沒有加熱,不會產生热发射,因此電子無法逆向流動。此設備可以作為交流電的整流器(之後稱為弗萊明管),也可以作為無線電波的探測器[1]。對於當時使用早期固態二極體(以礦石和貓鬚偵測器為基礎)的礦石收音機,可以顯著的提升其性能。不過此時仍需要擴大器。
1906年3月4日,奧地利人Robert von Lieben為充填水銀蒸氣的真空管三极管申請了專利[2][3][4]。而李·德富雷斯特也獨立發明了奧迪翁管,在1906年10月25日[5][6]為奧迪翁管申請了專利。不過一直到1912年研究者瞭解其放大能力後,才開始實際使用[7]。奧迪翁真空管加速了連續聲波的傳遞與接受。
1920年時,真空管的技術已相當成熟,成熟到可以開始無線電廣播的程度了[8][9]。不過最早可以當成是「廣播」的早期音频传输可能是在1906年的聖誕夜,由范信達所傳送的,只是這部份仍有爭議[10]。儘管許多早期的實驗者都試圖要發明類似無線電話,只允許二方互相通訊的設備,不過也有人試圖將訊號傳送給較多的聽眾。Charles Herrold於1909年在加利福尼亚州開始了廣播,隔年開始傳放音頻(Herrold的電台最後變成了KCBS電台。)
荷蘭海牙的PCGG電台在1919年11月6日開始廣播,成為第一個商業電台。1916年時,在西屋公司工作的電機工程師法蘭克·康拉德,開始在賓州Wilkinsburg的車庫中發送廣播,呼號8XK。這個電台之後移到西屋公司位在East Pittsburgh工廠的屋頂。西屋公司在1920年11月2日重新開始這個電台,叫作KDKA,是美國第一個獲得商業許可的電台[11]。廣播許可的類型會決定商業廣播的型式,一直到很多年後才開始有廣告。美國第一個獲得許可的電台就是KDKA,這也是1920年美国总统选举的結果。蒙特利尔電台(後來的CFCF電台在1920年5月20日開始廣播節目,而底特律電台(後來的WWJ電台)在1920年8月20日開始有廣播節目,不過這二個電台當時都沒有獲得許可。
娛樂用的廣播是在1920年從英國開始的,最早是在切爾姆斯福德附近Writtle,馬可尼研究中心的2MT電台。1920年6月15日時,知名女高音內莉·梅爾巴在切爾姆斯福德的馬克尼新街工廠製作了著名的廣播節目,節目中唱了二首詠嘆調,節目中也有以著名的顫音演唱,她是第一個參與廣播直播節目的國際知名藝術家。2MT電台在1922年開始有固定的娛樂節目。英国广播公司在1922年合併,在1926年取得皇家特許狀,是全世界第一個國立的廣播電台[12][13],1923年時捷克電台以及許多歐洲的電台紛紛成立。
1920年8月27日時,位在布宜諾斯艾利斯Teatro Coliseo的阿根廷廣播電台開始固定的廣播播放。因為阿根廷政府沒有正式的廣播許可程序,廣播電台 一直到1923年12月19日才取得許可。此電台繼續播放娛樂及文化節目達數十年之久[14]。
廣播相關的教育很快就出現了,美國的學院也開始將廣播相關課程放進其課程規劃中。馬薩諸塞州米爾頓的庫裡學院在1932年有第一個主修廣播的科系,當時該校與波士頓的WLOE合作,讓學生們播放節目[15]。
傳播方式
[编辑]一般是普通收音機能接收的。
電台的種類廣泛,有由幾個人運作的業餘電台,亦有數以百計職員的商營、公營電台,或是軍用電台。在一些已發展國家,非牟利的校園電台亦甚為常見。電台廣播內容有新聞報告、音樂點播、人物專訪、戲曲欣賞、體育旁述、廣告時間等。電台節目可以直播形式,或採用預先錄音形式廣播。部分電台更採用全電腦控制形式,播放預先錄製的節目內容。
虽然现在传统电台的光芒正在逐渐被网路电台所盖过,但是仍有许多使用AM技术的短波频率电台能在数千英里之外被接收到(除开夜晚)。比如说,BBC有一个完整的短波信号传送时刻表。这些广播对大气状况与太阳黑子非常敏感。
类型
[编辑]短波
[编辑]有關短波及中波、低頻(長波)的差異,參見短波廣播。短波大部份用在國家廣播公司、國際宣傳或是宗教電台組織[16]。
AM
[编辑]AM 电台是最早的广播电台,AM表示(Amplitude modulation),即振幅调谐(调幅),这是一种通过变化载波信号的振幅来调节信号的调制方法。
AM 广播在全世界范围内使用中波波段,欧洲也使用长波波段,由于20世纪80年代和90年代FM立体声广播电台的兴起,一些北美电台也开始使用AM进行立体声广播,但是这一举措没有赢得很多用户。
AM 的优势之一是,它的信号可以使用简单的设备探测到,如果一个信号强度足够大,接收器甚至不需要电源;建设一个不需要电源的收音机也成为了早期 AM 广播的梦想。
AM广播起源于北美的中波射电系统,载波信号的频段为 530 到 1700 kHz,在20世纪90年代,这个频段有加入了九个频道,它们的频段为 1620 到 1700 kHz,在美国,每个频道中间间隔 10 kHz,在其它地方大概是 9 kHz。
AM 信号容易受到来自闪电和其他电磁干扰的影响。
由于大气电离层中D层对信号的强力吸收,AM发射系统无法发射球状的电波,在夜间,这种吸收大幅减小,因此信号可以传播至更远的距离,但是,这也会造成一定的信号衰落,而且在一个频道拥挤的情况下,这意味着占据同一频率的不同频道必须在夜间减小信号功率,或者改变信号传播方向来避免干扰,在北美,电台之间共享一个频率。
AM 电波传送装置可以发射的信号频率最多为 15 kHz(注意信号频率和载波频率是两回事,收音机上的标识是载波频率),但是大多数的接收器(收音机)只能接受最大5kHz的信号,在20世纪20年代,这是可以满足当时需求的,因为当时的麦克风的保真度较低,磁带的转速为78转每分钟,扩音器的性能也很低,但随着科技的发展,音频设备的保真度大幅上升,而接收机的最大频率还是 5 kHz,不同AM电台在同一个服务区内不准使用重叠的频段,这避免了信号间的干扰,Bob Carver发明了 AM 立体声调谐器,使得这些接收器的频段可以超过 15 kHz,可是在几年之后,这种调谐器没有发展下去,再有就是,减少接收机的频段减小了制造成本,而且也使它们更耐干扰,减小了开发商开发立体声调谐器的积极性,因此AM的收听效果现在一直不好,比不上具备立体声的 FM。
FM
[编辑]卫星电台
[编辑]卫星广播(satellite broadcasting)利用广播卫星向地面转播电视或声音广播信号,供一般公众直接接收的广播方式。自从1963年7月美国发射成功世界上第1颗同步通信卫星“同步Ⅱ号”后,卫星通信得到很快发展。到20世纪70年代中期,各国开始发射实验用的广播卫星。到80年代卫星广播进入实用阶段。
地面数字广播
[编辑]地下电台
[编辑]地下电台是指未经所在地国家批准的电台。地下电台可以是一个由广告支持的针对接受区的听众的商业企业,或是供于私人经营的娱乐,或是为了政治目的,一般情况下只在一个非常小的范围下放送。
Digital
[编辑]數碼聲音廣播(Digital Audio Broadcasting,DAB),亦稱尤里卡147(EUREKA 147),是目前用於某些國家的電台廣播的數碼技術。自2006年,全世界有約1,000個電台採用DAB技術作廣播之用。
DAB技術於1980年代設計,幾年內許多國家已有其接收器。支持者聲稱這標準比類比FM廣播較多好處,例如聲音保真度高,以及同一頻率可廣播更多電台頻道,解決對噪音、多徑、廣播音量時強時弱和同頻率干擾的問題;但由英國、丹麥、挪威和瑞士的98%的電台進行的收聽測試實驗證明DAB的聲音品質比FM廣播差,原因是他們使用的位元率太低,導致品質上差異。
节目形式
[编辑]电台节目形式依国家、监管和市场的不同而不同。例如美國联邦通信委员会規定美國在88–92 MHz頻道的節目要是非營利或是教育性的,其中不能含有廣告。
此外,节目形式也會隨著時代以及技術的演進而不同。早期的廣播設備只允許現場錄製節目後直接播放,稱為live。後來錄音技術進步,越來越多的廣播節目是先行製作後,再播放事先錄製好的節目。目前的趨勢是電台的自动化(廣播電臺自動化播出系統)。有一些電台已可以在不需人力介入的情形下運作,完全用電腦控制,依序播放事先錄製好的內容。 電台節目的主播又分為DJ和電台節目的主持人,DJ主要都是在分享音樂,而電台主持人則會有一個主題(例如:政論或旅遊等)主要在分享資訊。
參見
[编辑]参考资料
[编辑]- ^ Guarnieri, M. The age of vacuum tubes: Early devices and the rise of radio communications. IEEE Ind. Electron. M. 2012: 41–43. doi:10.1109/MIE.2012.2182822.
- ^ [1] (页面存档备份,存于互联网档案馆) DRP 179807
- ^ Tapan K. Sarkar (ed.) "History of wireless", John Wiley and Sons, 2006. ISBN 0-471-71814-9, p.335
- ^ Sōgo Okamura (ed), History of Electron Tubes, IOS Press, 1994 ISBN 90-5199-145-2 page 20
- ^ [2] (页面存档备份,存于互联网档案馆) Patent US841387 from 10/25/1906
- ^ U.S. Patent 879,532. [2018-06-19]. (原始内容存档于2014-01-31).
- ^ Nebeker, Frederik. Dawn of the Electronic Age: Electrical Technologies in the Shaping of the Modern World, 1914 to 1945. John Wiley & Sons. 2009: 14–15 [2018-06-19]. ISBN 0470409746. (原始内容存档于2019-04-28).
- ^ The Invention of Radio. [2018-06-19]. (原始内容存档于2017-04-05).
- ^ Guarnieri, M. The age of vacuum tubes: the conquest of analog communications. IEEE Ind. Electron. M. 2012: 52–54. doi:10.1109/MIE.2012.2193274.
- ^ Fessenden — The Next Chapter RWonline.com (页面存档备份,存于互联网档案馆)
- ^ Baudino, Joseph E; John M. Kittross. Broadcasting's Oldest Stations: An Examination of Four Claimants. Journal of Broadcasting. Winter 1977: 61–82 [2013-01-18]. (原始内容存档于2008-03-06).
- ^ Callsign 2MT & New Street. [2018-06-26]. (原始内容存档于2021-05-05).
- ^ BBC History – The BBC takes to the Airwaves. BBC News. [2018-06-26]. (原始内容存档于2019-11-22).
- ^ Atgelt, Carlos A. "Early History of Radio Broadcasting in Argentina." (页面存档备份,存于互联网档案馆) The Broadcast Archive (Oldradio.com).
- ^ 存档副本. [2022-07-29]. (原始内容存档于2021-05-25).
- ^ Grodkowski, Paul. Beginning Shortwave Radio Listening. Booktango. 2015-08-24 [2018-05-21]. ISBN 9781468964240. (原始内容存档于2021-01-01) (英语).