在不同的引力度规理论中,决定时空度规的场方程具有很大的差异。但是,在弱场和慢运动及低能的情况下,几乎所有度规理论的时空度规都具有相同的结构,都可以写成闵可夫斯基度规加上微擾,并按照由系统的物质变量所定义的各种引力势的幂级数展开。各种度规理论都具有相同形式的度规展开式,它们的区别仅在于展开系数有不同的值。这样,就可以用一个统一的后牛顿理论来描述各种度规理论。这样一个统一的理论称为 参数化后牛顿(PPN)形式体系,度规展开式中的展开系数称为PPN参数。
采用近整体罗伦茲坐标系,其中的坐标为
。始终用3维欧几里得矢量记号。所有的坐标任意性(“规范自由度”)已用对标准的PPN规范专门化的坐标除去。
- (1)
在与引力作用着的物质瞬时共动局部自由降落系中测量的静质量密度。 - (2)
物质的坐标速度。 - (3)
PPN坐标系(相对于宇宙平均静系)的坐标速度。 - (4)
在与物质瞬时共动的自由降落系中测量的压强。 - (5)
单位静质量的内能,它包括所有形式的非静质量、非引力的能量,即压力能和热能。
- 1、
![{\displaystyle U=\int {\frac {\rho ({x}')}{\left|{\vec {x}}-{\vec {x}}'\right|}}{{d}^{3}}{x}'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/71582609e8eecd375c6bf5dc44478888127d7db3)
- 2、
![{\displaystyle {{U}_{ij}}=\int {{\frac {\rho ({\vec {x}}')}{{\left|{\vec {x}}-{\vec {x}}'\right|}^{3}}}({{x}_{i}}-{{x}_{i}}^{\prime })({{x}_{j}}-{{x}_{j}}^{\prime }){{d}^{3}}{x}'}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/db26b241b013325e93e4f8530f3e2c65b9848740)
- 3、
![{\displaystyle {{\Phi }_{w}}=\int {{\frac {\rho ({\vec {x}}')\rho ({\vec {x}}'')}{{\left|{\vec {x}}-{\vec {x}}'\right|}^{3}}}\left(\left({\vec {x}}-{\vec {x}}'\right)\cdot \left({\frac {\left({\vec {x}}'-{\vec {x}}''\right)}{\left|{\vec {x}}-{\vec {x}}''\right|}}-{\frac {\left({\vec {x}}-{\vec {x}}''\right)}{\left|{\vec {x}}'-{\vec {x}}''\right|}}\right)\right){{d}^{3}}{x}'{{d}^{3}}{x}''}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ee5ba6cfeca6369bd5e9c530aeb3a416ef98413)
- 4、
![{\displaystyle A=\int {\frac {\rho ({\vec {x}}'){{\left({\vec {v}}'\centerdot ({\vec {x}}-{\vec {x}}')\right)}^{2}}}{{\left|{\vec {x}}-{\vec {x}}'\right|}^{3}}}{{d}^{3}}{x}'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/704806a0fa530d56dbfdea22e0845fa13f0a5de1)
- 5、
![{\displaystyle {{\Phi }_{1}}=\int {\frac {\rho ({{\vec {x}}'}){{{v}'}^{2}}}{\left|{\vec {x}}-{\vec {x}}'\right|}}{{d}^{3}}{x}'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8ba384a5f638f89f73d7d5e1711f0e8d6e8b2d8a)
- 5、
![{\displaystyle {{\Phi }_{1}}=\int {\frac {\rho ({{\vec {x}}'}){{{v}'}^{2}}}{\left|{\vec {x}}-{\vec {x}}'\right|}}{{d}^{3}}{x}'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8ba384a5f638f89f73d7d5e1711f0e8d6e8b2d8a)
- 6、
![{\displaystyle {{\Phi }_{2}}=\int {\frac {\rho ({\vec {x}}')U({\vec {x}}')}{\left|{\vec {x}}-{\vec {x}}'\right|}}{{d}^{3}}{x}'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a10002902ec4cf19d6c42db33eff22bb39da7459)
- 7、
![{\displaystyle {{\Phi }_{3}}=\int {\frac {\rho ({\vec {x}}')\pi ({\vec {x}}')}{\left|{\vec {x}}-{\vec {x}}'\right|}}{{d}^{3}}{x}'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d26142298fc0e35048281dd6edf497bfabbcb3fd)
- 8、
![{\displaystyle {{\Phi }_{4}}=\int {\frac {p({\vec {x}}')}{\left|{\vec {x}}-{\vec {x}}'\right|}}{{d}^{3}}{x}'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1fb9fca9330ac38548c75e8e47c97bd39416fe9a)
- 9、
![{\displaystyle {{V}_{i}}=\int {{\frac {\rho ({\vec {x}}'){{{v}_{i}}'}}{\left|{\vec {x}}-{\vec {x}}'\right|}}{{d}^{3}}{x}'}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0c48abaaa3d0495cc287b566176b22f171998336)
- 10、
![{\displaystyle {{W}_{i}}=\int {{\frac {\rho ({\vec {x}}')\left({\vec {v}}'\centerdot ({\vec {x}}-{\vec {x}}')\right)\left({{x}_{i}}-{{x}_{i}}^{\prime }\right)}{{\left|{\vec {x}}-{\vec {x}}'\right|}^{3}}}{{d}^{3}}{x}'}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/25140cd9a5e8381d7686080dae515c11c4659477)
![{\displaystyle {\begin{aligned}&{{g}_{00}}=-1+2U-2\beta {{U}^{2}}-2\xi {{\Phi }_{w}}\\&\mathop {} _{}+(2\gamma +2+{{\alpha }_{3}}+{{\zeta }_{1}}-2\xi ){{\Phi }_{1}}\\&\mathop {} _{}+2(3\gamma -2\beta +1+{{\zeta }_{2}}+\xi ){{\Phi }_{2}}\\&\mathop {} _{}{\text{+}}2(1+{{\zeta }_{3}}){{\Phi }_{3}}\\&\mathop {} _{}+2(3\gamma +3{{\zeta }_{4}}-2\xi ){{\Phi }_{4}}\\&\mathop {} _{}-({{\zeta }_{1}}-2\xi )A-({{\alpha }_{1}}-{{\alpha }_{2}}-{{\alpha }_{3}}){{w}^{2}}U\\&\mathop {} _{}-{{\alpha }_{2}}{{w}^{i}}{{w}^{j}}{{U}_{ij}}+(2{{\alpha }_{3}}-{{\alpha }_{1}}){{w}^{i}}{{V}_{i}}+O\left({{\varepsilon }^{3}}\right)\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e63c37b6dc70a0a01dd041add1ac102ffb0b626d)
![{\displaystyle {\begin{aligned}&{{g}_{0i}}=-{\frac {1}{2}}\left(4\gamma +3+{{\alpha }_{1}}-{{\alpha }_{2}}+{{\zeta }_{1}}-2\xi \right){{V}_{i}}\\&-{\frac {1}{2}}\left(1+{{\alpha }_{2}}-{{\zeta }_{1}}+2\xi \right){{W}_{i}}-{\frac {1}{2}}\left({{\alpha }_{1}}-2{{\alpha }_{2}}\right){{w}^{i}}U-{{\alpha }_{2}}{{w}^{i}}{{U}_{ij}}+O\left({{\varepsilon }^{5/2}}\right)\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a8958683d47ac21e75608b2485fe8edd1a88bef5)
![{\displaystyle {\begin{aligned}{{g}_{ij}}=(1+2\gamma U){{\delta }_{ij}}+O\left({{\varepsilon }^{2}}\right)\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/52fc7434ec159740d4134277858abcf6b7c22a19)
![{\displaystyle {{T}^{00}}=\rho \left(1+\pi +{{v}^{2}}+2U\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a74b80fbf4b9aafb2ee02ec976f23c98232cdff1)
![{\displaystyle {{T}^{0i}}=\rho \left(1+\pi +{{v}^{2}}+2U+{\frac {p}{\rho }}\right){{v}^{i}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c73f218896444d13cbb3161a82de954d3f678be8)
![{\displaystyle {{T}^{ij}}=\rho {{v}^{i}}{{v}^{j}}\left(1+\pi +{{v}^{2}}+2U+{\frac {p}{\rho }}\right)+p{{\delta }^{ij}}\left(1-2\gamma U\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/faa51e95b0f7e9d9229667650df6c18aa497cd26)
- (1)受应力的物质:
![{\displaystyle {{T}^{\mu \nu }}_{;\nu }=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a6a2512ef338175c5c5e781c7bd21ebac6d4ebe8)
- (2)检验物体:
![{\displaystyle {\frac {{{d}^{2}}{{x}^{\mu }}}{d{{\lambda }^{2}}}}+\Gamma _{\alpha \beta }^{\mu }{{u}^{\alpha }}{{u}^{\beta }}=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b1344d9c580a00d93d9235ffd3ccd4feef07abcf)
- (3)Maxswell方程组:
![{\displaystyle {{F}^{\mu \nu }}_{;\nu }={{\mu }_{0}}{{J}^{\mu }},{{F}_{\mu \nu }}={{A}_{\nu ;\mu }}-{{A}_{\mu ;\nu }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/88af7447c88221bfff59213649d69876be3bd30d)
理论 | 任意常数或函数 | 宇宙匹配参数 | ![{\displaystyle \gamma }](https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a) | ![{\displaystyle \beta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8) | ![{\displaystyle \xi }](https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db) | ![{\displaystyle {{\alpha }_{1}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/89b335a692f8b0d08855417f86047044706d7431) | |
标准理论 |
广义相对论 | 无 | 无 | 1 | 1 | 0 | 0 | 0 |
标量-张量理论 |
Brans-Dicke | ![{\displaystyle {{\omega }_{BD}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f35834f5ad07578b35ba321900059bd9f478fccb) | ![{\displaystyle {{\phi }_{0}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3bafa2a5540a6d4adb33f6c64c4ea7311ca9ea9f) | ![{\displaystyle {\frac {1+{{\omega }_{BD}}}{2+{{\omega }_{BD}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b7daa00cfed7e1df3cd8c88f204b813415d241bc) | 1 | 0 | 0 | 0 |
一般 | ![{\displaystyle A\left(\varphi \right),V\left(\varphi \right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bcbfe3eab61106c551441fd90a3717c5f66b01c8) | ![{\displaystyle {{\varphi }_{0}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5a0d9d5a5338d0490c5366b2967ca3e6ba82852c) | ![{\displaystyle {\frac {1+\omega }{2+\omega }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/07e8be4182d99a7d1f1cd3b9b0ac3c6e83f360ef) | ![{\displaystyle 1+\Lambda }](https://wikimedia.org/api/rest_v1/media/math/render/svg/cc89f2453841640b7f76f14920a9ddbc5acd95bf) | 0 | 0 | 0 |
矢量-张量理论 |
无限制 | ![{\displaystyle \omega ,{{c}_{1}},{{c}_{2}},{{c}_{3}},{{c}_{4}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eeb1b3cd5b0e387a17324ddb579ae77ab7aa0e12) | ![{\displaystyle u}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8) | ![{\displaystyle {\gamma }'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b03b9cea7150f1afe25fb408c3a328c9c1b2c88c) | ![{\displaystyle {\beta }'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c0a89d31ab6e351da631e3f69ce6483f2d1d5206) | 0 | ![{\displaystyle {{\alpha }'_{1}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b4114154d851f0f5d2addb57764201802af37e4) | |
Einstein-Æther | ![{\displaystyle {{c}_{1}},{{c}_{2}},{{c}_{3}},{{c}_{4}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4eed05aba06caecea2d54a11872a8a8739a2fae7) | 无 | 1 | 1 | 0 | ![{\displaystyle {{\alpha }'_{1}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b4114154d851f0f5d2addb57764201802af37e4) | |
Rosen理论 |
Rosen’s bimetric | 无 | ![{\displaystyle {{c}_{0}},{{c}_{1}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/57c0eb0287d21b6c387e98e1ea14bdcad46694e3) | 1 | 1 | 0 | 0 | |
ECT理论 |
不考虑自旋场 | ![{\displaystyle {\beta }}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4f08e5bb6adcac8ac464df79e6a2e43779898ab7) | 无 | ![{\displaystyle {\frac {1}{1-\beta }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/184897dc5615bad2f4780d85f084e2adbce33d87) | 1 | 0 | 0 | 0 |
Nordtvedt理论 |
Will | ![{\displaystyle {{c}_{1}}=-1,{{c}_{2}}={{c}_{3}}={{c}_{4}}=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b40a03c149abba6fef46f2579696e52702e6ab16) | 无 | 1 | 1 | 0 | 0 | |
Hellings | | 无 | ![{\displaystyle {{f}_{1}}\left(\omega ,u\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/30518e64b08b52dcde4828e593066641aded7fa1) | ![{\displaystyle {{f}_{2}}\left(\omega ,u\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ced94914a98e669f3d1daa55c268eb35c1ce143e) | 0 | ![{\displaystyle {{f}_{3}}\left(\omega ,u\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4b958430844feb0b6464acb318cc2ec707a76376) | |
- 郑庆璋,崔世治. 广义相对论基本教程. 广州: 中山大学出版社. 1991 (中文).
- C.M.Will. Theory and experiment in gravitational Physics. Canbridge: Cambridge Uni.,Press. 1981 (英语).
- 秦荣先,阎永廉. 广义相对论与引力理论实验检验. 上海: 上海科技日报社. 1987 (中文).
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativity. 2009. (原始内容存档于2019-12-10) (英语).
|
---|
|
基礎概念 | |
---|
现象 | |
---|
方程 | |
---|
進階理論 | |
---|
精确解 | |
---|
近似解与数值模拟 | |
---|
科學家 | |
---|