在积分学中,椭圆积分最初出现于椭圆的弧长有关的问题中。朱利奥·法尼亚诺和欧拉是最早的研究者。现代数学将椭圆积分定义为可以表达为如下形式的任何函数
的积分
![{\displaystyle f(x)=\int _{c}^{x}R[t,{\sqrt[{}]{P(t)}}]\ dt\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f64997726d1cd7063eddda9718a71431e3a23789)
其中
是其两个参数的有理函数,
是一个无重根的
或
阶多项式,而
是一个常数。
通常,椭圆积分不能用基本函数表达。这个一般规则的例外出现在
有重根的时候,或者是
,
没有
的奇数幂时。但是,通过适当的简化公式,每个椭圆积分可以变为只涉及有理函数和三个经典形式的积分。(也即,第一,第二,和第三类的椭圆积分)。
除下面给出的形式之外,椭圆积分也可以表达为勒让德形式和Carlson对称形式。通过对施瓦茨-克里斯托费尔映射的研究可以加深对椭圆积分理论的理解。历史上,椭圆函数是作为椭圆积分的逆函数被发现的,特别是这一个:
其中
是雅可比正弦椭圆函数。
椭圆积分通常表述为不同变量的函数。这些变量完全等价(它们给出同样的椭圆积分),但是它们看起来很不相同。很多文献使用单一一种标准命名规则。在定义积分之前,先来检视一下这些变量的命名常规:
模角;
椭圆模;
参数;
上述三种常规完全互相确定。规定其中一个和规定另外一个一样。椭圆积分也依赖于另一个变量,可以有如下几种不同的设定方法:
幅度
其中![{\displaystyle x=\sin \phi ={\textrm {sn}}\;u\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/398972690d27c61999dd585118dead35140918bc)
,其中
而
是雅可比椭圆函数之一
规定其中一个决定另外两个。这样,它们可以互换地使用。注意
也依赖于
。其它包含
的关系有
![{\displaystyle \cos \phi ={\textrm {cn}}\;u\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/921a6ba2b067534fc4fa5fd2c398fde8bd4a100b)
和
![{\displaystyle {\sqrt {1-m\sin ^{2}\phi }}={\textrm {dn}}\;u.\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bde0347350cadf065086badb02df2912fc4987f2)
后者有时称为δ幅度并写作
。有时文献也称之为补参数,补模或者补模角。这些在四分周期中有进一步的定义。
第一类不完全椭圆积分
定义为
![{\displaystyle F(\phi \setminus \alpha )=F(\phi |m)=\int _{0}^{\phi }{\frac {{\rm {d}}\theta }{\sqrt {1-(\sin \theta \sin \alpha )^{2}}}}.\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4681e94d2643c64f1b1aed1f7aed0fe5c7380da6)
与此等价,用雅可比的形式,可以设
;则
![{\displaystyle F(\phi \setminus \alpha )=F(x;k)=\int _{0}^{x}{\frac {{\rm {d}}t}{\sqrt {(1-t^{2})(1-k^{2}t^{2})}}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9cbaf6750333b35796643f841f5c6081ff79695e)
其中,假定任何有竖直条出现的地方,紧跟竖直条的变量是(如上定义的)参数;而且,当反斜杠出现的时候,跟着出现的是模角。 在这个意义下,
,这里的记法来自标准参考书Abramowitz and Stegun。
但是,还有许多不同的用于椭圆积分的记法。取值为椭圆积分的函数没有(像平方根,正弦和误差函数那样的)标准和唯一的名字。甚至关于该领域的文献也常常采用不同的记法。Gradstein, Ryzhik[1] (页面存档备份,存于互联网档案馆),
.(8.111)]采用
。该记法和这里的
;以及下面的
等价。
和上面的不同对应的是,如果从Mathematica语言翻译代码到Maple语言,必须将EllipticK函数的参数用它的平方根代替。反过来,如果从Maple翻到Mathematica,则参数应该用它的平方代替。Maple中的EllipticK(
)几乎和Mathematica中的EllipticK[
]相等;至少当
时是相等的。
注意
![{\displaystyle F(x;k)=u\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bf282d78326ee26cd9e34f84706072da2508e8c7)
其中
如上文所定义:由此可见,雅可比椭圆函数是椭圆积分的逆。
![{\displaystyle \forall \varphi _{1},\varphi _{2}\in \left]-{\frac {\pi }{2}};{\frac {\pi }{2}}\right[,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/989fec711a792ee800b77b31e2335eac09a567cf)
![{\displaystyle F\left(\varphi _{1},k\right)+F\left(\varphi _{2},k\right)=F\left(\arctan \left(\tan \varphi _{1}{\sqrt {1-k^{2}\sin ^{2}\varphi _{2}}}\right)+\arctan \left(\tan \varphi _{2}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}\right),k\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/250b3ce80ff2878416bcbb937c3940705080521f)
![{\displaystyle \arctan \left(\tan \varphi _{1}{\sqrt {1-k^{2}\sin ^{2}\varphi _{2}}}\right)+\arctan \left(\tan \varphi _{2}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}\right)\in [-\pi /2;\pi /2]\Rightarrow }](https://wikimedia.org/api/rest_v1/media/math/render/svg/cbce7940dbd301d450a8df8f9e5ec059be6184d5)
![{\displaystyle F\left(\varphi _{1},k\right)+F\left(\varphi _{2},k\right)=F\left(\arcsin {\frac {\cos \varphi _{1}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}\sin \varphi _{2}+\cos \varphi _{2}{\sqrt {1-k^{2}\sin ^{2}\varphi _{2}}}\sin \varphi _{1}}{1-k^{2}\sin ^{2}\varphi _{1}\sin ^{2}\varphi _{2}}},k\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a5a5ac646526f84f4b9b2a8f1f5a99dce1093bc7)
![{\displaystyle \arctan \left(\tan \varphi _{1}{\sqrt {1-k^{2}\sin ^{2}\varphi _{2}}}\right)+\arctan \left(\tan \varphi _{2}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}\right)\in [0;\pi ]\Rightarrow }](https://wikimedia.org/api/rest_v1/media/math/render/svg/847d9b225998e6ff4e6ba2417215602b7344d425)
![{\displaystyle F\left(\varphi _{1},k\right)+F\left(\varphi _{2},k\right)=F\left(\arccos {\frac {\cos \varphi _{1}\cos \varphi _{2}-\sin \varphi _{1}\sin \varphi _{2}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}{\sqrt {1-k^{2}\sin ^{2}\varphi _{2}}}}{1-k^{2}\sin ^{2}\varphi _{1}\sin ^{2}\varphi _{2}}},k\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/df006912cd11829aca712cbf4bfa6c8cc07b3806)
![{\displaystyle F(x+n\pi ;k)=F(x;k)+2nK(k)\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ca5848bb8338062a60b3f3603f550c930e33ffc4)
![{\displaystyle F(x+{\frac {n\pi }{2}};k)=nK(k)\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d40e0aeae942c91b7665b238f19218d9e8e0ad65)
![{\displaystyle n\in \mathbb {Z} \,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72c6a1671b9231101853fed8f7ac477b4d76b133)
![{\displaystyle F(-x;k)=-F(x;k)\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5fbb9c510c81efd1cfefe61292dbf9ec7b48263f)
![{\displaystyle F(x;0)=x\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/96aed30bad9fd13c52ac4722d173be550bbac525)
![{\displaystyle F(0;k)=-F(x;k)\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5c698fed2d08703b72b789d2a25b0c78b4ce8e51)
![{\displaystyle F(x;1)={\rm {arctanh}}\sin x\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9b69737b4bf90acd1a6f970c94c1251910f2b34e)
![{\displaystyle -{\frac {\pi }{2}}<\Re (x)<{\frac {\pi }{2}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e537cf0a367c841e7eb9a7697b0d92c46931c974)
![{\displaystyle {\frac {\rm {d}}{{\rm {d}}x}}F(x;k)={\frac {1}{\sqrt {1-k^{2}\sin ^{2}x}}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a96f7f77dcbd2ad6231ce450a122576eff7957d7)
![{\displaystyle {\frac {\rm {d}}{{\rm {d}}k}}F(x;k)={\frac {E(x;k)}{2k(1-k)}}-{\frac {F(x;k)}{2k}}-{\frac {\sin 2x}{4(1-k){\sqrt {1-k\sin ^{2}x}}}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dfe237c8311e224c91caa2c2c971c0d9725b1aa0)
第二类不完全椭圆积分
是
![{\displaystyle E(\phi \setminus \alpha )=E(\phi |m)=\int _{0}^{\phi }\!E'(\theta )\ {\rm {d}}\theta =\int _{0}^{\phi }{\sqrt {1-(\sin \theta \sin \alpha )^{2}}}\ {\rm {d}}\theta .\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cdbd2eaf280e5865239e37ad721012bdb0c37620)
与此等价,采用另外一个记法(作变量替换
),
![{\displaystyle E(x;k)=\int _{0}^{x}{\frac {\sqrt {1-k^{2}t^{2}}}{\sqrt {1-t^{2}}}}\ {\rm {d}}t.\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/94be262530149aef12e122e566a6715171a2141c)
其它关系包括
![{\displaystyle E(\phi |m)=\int _{0}^{u}{\textrm {dn}}^{2}w\;{\rm {d}}w=u-m\int _{0}^{u}{\textrm {sn}}^{2}w\;{\rm {d}}w=(1-m)u+m\int _{0}^{u}{\textrm {cn}}^{2}w\;{\rm {d}}w.\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fbde140826fea1fe5904d4b1812c70161c405fca)
![{\displaystyle E(\phi |k^{2})=(1-k^{2})\int _{0}^{\phi }{\frac {{\rm {d}}\theta }{(1-k^{2}\sin ^{2}\theta ){\sqrt {1-k^{2}\sin ^{2}\theta }}}}+{\frac {k^{2}\sin \theta \cos \theta }{\sqrt {1-k^{2}\sin ^{2}\theta }}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eafc0962de14302d08a1b888acd741eeddf778c6)
![{\displaystyle \forall \varphi _{1},\varphi _{2}\in \left]-{\frac {\pi }{2}};{\frac {\pi }{2}}\right[,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/989fec711a792ee800b77b31e2335eac09a567cf)
![{\displaystyle \textstyle E\left(\varphi _{1},k\right)+E\left(\varphi _{2},k\right)=\left[{\begin{aligned}E\left(\arctan \left(\tan \varphi _{1}{\sqrt {1-k^{2}\sin ^{2}\varphi _{2}}}\right)+\arctan \left(\tan \varphi _{2}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}\right),k\right)\\+{\frac {k^{2}\sin \varphi _{1}\sin \varphi _{2}\left(\cos \varphi _{1}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}\sin \varphi _{2}+\cos \varphi _{2}{\sqrt {1-k^{2}\sin ^{2}\varphi _{2}}}\sin \varphi _{1}\right)}{1-k^{2}\sin \varphi _{1}\sin \varphi _{2}}}\end{aligned}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b42b85802f1d5c5d1662a33f4d575098caf657bd)
![{\displaystyle E(\phi +n\pi ;k)=E(\phi ;k)+2nE(k)\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3fa4a69905f48d5ab67ef20386df440194d41bbd)
![{\displaystyle E(-\phi ;k)=-E(\phi ;k)\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e520fe1c337b5d1daa025193980de33e5f450484)
![{\displaystyle {\frac {\rm {d}}{{\rm {d}}\phi }}E(\phi ;k)={\sqrt {1-k^{2}\sin ^{2}\phi }}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3c20022b3363eb1d7227b5cd47b31da5efcdf868)
![{\displaystyle {\frac {\rm {d}}{{\rm {d}}k}}E(\phi ;k)={\frac {E(\phi ;k)-F(\phi ;k)}{2k}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ec4ef77d040f83b665652b7df24faf4c6b1e62f0)
![{\displaystyle {\frac {{\rm {d}}^{n}}{{\rm {d}}k^{n}}}E(\phi ;k)={\frac {\pi }{2k^{n}}}{}_{2}F_{1}\left(-{\frac {1}{2}},{\frac {1}{2}};1-n;k\right)-{\frac {{\sqrt {\pi }}\cos \phi }{2k^{2n}}}F_{2\times 1\times 0}^{1\times 3\times 2}{\begin{bmatrix}{\frac {1}{2}};-{\frac {1}{2}},{\frac {1}{2}},1;{\frac {1}{2}},1;\\1,{\frac {3}{2}};1-n;;\\-k^{2}\cos \phi ,\cos ^{2}\phi \end{bmatrix}}+{\frac {\pi m^{1-n}\cos \phi }{8}}F_{3\times 1\times 1}^{2\times 1\times 1}{\begin{bmatrix}{\frac {1}{2}},{\frac {3}{2}},2;{\frac {1}{2}},1;\\2,2-n;1-n;{\frac {3}{2}};{\frac {3}{2}};\\-k^{2}\cos ^{2}\phi ,k^{2}\end{bmatrix}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/adcf9a1c0f948da58a347398db51f51227edbfff)
第三类不完全椭圆积分
是
![{\displaystyle \Pi (n;\phi |m)=\int _{0}^{\phi }{\frac {{\rm {d}}\theta }{(1-n\sin ^{2}\theta ){\sqrt {1-(\sin \theta \sin o\!\varepsilon )^{2}}}}},\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1b5ed79f77b8aecb78d97172d27499ec030c8c7f)
或者
![{\displaystyle \Pi (n;\phi |m)=\int _{0}^{\sin \phi }{\frac {{\rm {d}}t}{(1-nt^{2}){\sqrt {(1-k^{2}t^{2})(1-t^{2})}}}},\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/219e4d4ea75bde60ef196d0e8d66c3032d756595)
或者
![{\displaystyle \Pi (n;\phi |m)=\int _{0}^{F(\phi |m)}{\frac {{\rm {d}}w}{1-n{\textrm {sn}}^{2}(w|m)}}.\;\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2a274d688866dcc3ee1eb9c39f79801baec7d8d4)
数字
称为特征数,可以取任意值,和其它参数独立。但是要注意
对于任意
是无穷的。
![{\displaystyle \Pi (n;\phi _{1},k)+\Pi (n;\phi _{2},k)=\Pi \left[n;\arccos {\frac {\cos \phi _{1}\cos \phi _{2}-\sin \phi _{1}\sin \phi _{2}{\sqrt {(1-k^{2}\sin ^{2}\phi _{1})(1-k^{2}\sin ^{2}\phi _{2})}}}{1-k^{2}\sin ^{2}\phi _{1}\sin ^{2}\phi _{2}}},k\right]-{\sqrt {\frac {n}{(1-n)(n-k^{2})}}}\arctan {\frac {{\sqrt {(1-n)n(n-k^{2})}}\sin \arccos {\frac {\cos \phi _{1}\cos \phi _{2}-\sin \phi _{1}\sin \phi _{2}{\sqrt {(1-k^{2}\sin ^{2}\phi _{1})(1-k^{2}\sin ^{2}\phi _{2})}}}{1-k^{2}\sin ^{2}\phi _{1}\sin ^{2}\phi _{2}}}\sin \phi _{1}\sin \phi _{2}}{{\frac {n\cos \phi _{1}\cos \phi _{2}-n\sin \phi _{1}\sin \phi _{2}{\sqrt {(1-k^{2}\sin ^{2}\phi _{1})(1-k^{2}\sin ^{2}\phi _{2})}}}{1-k^{2}\sin ^{2}\phi _{1}\sin ^{2}\phi _{2}}}{\sqrt {1-k^{2}\sin ^{2}\arccos {\frac {\cos \phi _{1}\cos \phi _{2}-\sin \phi _{1}\sin \phi _{2}{\sqrt {(1-k^{2}\sin ^{2}\phi _{1})(1-k^{2}\sin ^{2}\phi _{2})}}}{1-k^{2}\sin ^{2}\phi _{1}\sin ^{2}\phi _{2}}}}}\sin \phi _{1}\sin \phi _{2}+1-n\sin ^{2}\arccos {\frac {\cos \phi _{1}\cos \phi _{2}-\sin \phi _{1}\sin \phi _{2}{\sqrt {(1-k^{2}\sin ^{2}\phi _{1})(1-k^{2}\sin ^{2}\phi _{2})}}}{1-k^{2}\sin ^{2}\phi _{1}\sin ^{2}\phi _{2}}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aecc6843efc7125845fda08e45c077f981276566)
![{\displaystyle {\frac {\partial }{\partial n}}\Pi (n;\phi ,k)={\frac {1}{2(k^{2}-n)(n-1)}}\left[E(\phi ;k)+{\frac {(k^{2}-n)F(\phi ;k)}{n}}+{\frac {(n^{2}-k^{2})\Pi (n;\phi ,k)}{n}}-{\frac {n{\sqrt {1-k^{2}\sin \phi }}\sin 2\phi }{2(1-n\sin ^{2}\phi )}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2ab1e3193951a021adf86192ac8b7ab379b43e9c)
![{\displaystyle {\frac {{\partial }^{m}}{\partial n^{m}}}\Pi (n;\phi ,k)={\frac {\sin \phi }{n^{m}}}\sum _{q=0}^{\infty }{\frac {q!(n\sin ^{2}\phi )^{q}}{(2q+1)\Gamma (q-m+1)}}F_{1}\left(q+{\frac {1}{2}},{\frac {1}{2}},{\frac {1}{2}};q+{\frac {3}{2}};\sin ^{2}\phi ,k^{2}\sin ^{2}\phi \right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3c23208516c5c33d7425c3d0aad2a267a0b77c5b)
![{\displaystyle {\frac {\partial }{\partial \phi }}\Pi (n;\phi ,k)={\frac {1}{(1-k^{2}\sin ^{2}\phi )}}\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a75d293ccbe6084afef176431d2b299ec28b31f3)
![{\displaystyle {\frac {\partial }{\partial k}}\Pi (n;\phi ,k)={\frac {k}{n-k^{2}}}\left[{\frac {E(\phi ;k)}{k^{2}-1}}+\Pi (n;\phi ,k)-{\frac {k^{2}\sin 2\phi }{2(k^{2}-1){\sqrt {1-k^{2}\sin ^{2}\phi }}}}\right]\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b58449775f292c66d7806ecce70461760938d014)
![{\displaystyle \Pi (n;\phi ,1)={\frac {1}{2n-2}}\left[{\sqrt {n}}\ln {\frac {1+{\sqrt {n}}\sin \phi }{1-{\sqrt {n}}\sin \phi }}-2\ln(\sec \phi +\tan \phi )\right]\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b67a073512a469f04ff3a6037960156f472458ba)
![{\displaystyle -{\frac {\pi }{2}}\leq \Re (\phi )\leq {\frac {\pi }{2}}\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a35abdbc98036f9d8be7ddf632386d3d914b0e8d)
![{\displaystyle \Pi (0;\phi ,k)=F(\phi ,k)\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b0faa2fc6cf2034f25bd5ba1e661875d5247420)
![{\displaystyle \Pi (n;\phi ,0)={\frac {{\rm {arctanh}}({\sqrt {n-1}}\tan \phi )}{\sqrt {n-1}}}\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bda388cd9196c717fa7203dc920165973c6b4ea6)
![{\displaystyle -{\frac {\pi }{2}}\leq \Re (\phi )\leq {\frac {\pi }{2}}\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a35abdbc98036f9d8be7ddf632386d3d914b0e8d)
![{\displaystyle \Pi (n;\phi ,{\sqrt {n}})={\frac {1}{1-n}}\left[E(\phi ,{\sqrt {n}})-{\frac {n\sin 2\phi }{2{\sqrt {1-n\sin ^{2}\phi }}}}\right]\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ada6fafca2f1c3b38ee137c2f4af985caa131373)
![{\displaystyle \Pi \left(n;{\frac {1}{k}},k\right)={\frac {1}{k}}\Pi \left({\frac {n}{k^{2}}},{\frac {1}{k}}\right)\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0734dbf285dc3fbce6858902d49227e8c33bfb09)
![{\displaystyle \Pi \left(1;\phi ,k\right)={\frac {{\sqrt {1-k^{2}\sin ^{2}\phi }}\tan \phi -E(\phi ,k)}{1-k^{2}}}+F(\phi ,k)\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ae2e687896bdc419636791ea686ffd5637af1e64)
第一类完全椭圆积分
如果幅度为
或者
,则称椭圆积分为完全的。 第一类完全椭圆积分
可以定義为
![{\displaystyle K(k)=\int _{0}^{\frac {\pi }{2}}{\frac {{\rm {d}}\theta }{\sqrt {1-k^{2}\sin ^{2}\theta }}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/87f73c1b30a073d2725b1d82480967a9fda3c659)
或者
![{\displaystyle K(k)=\int _{0}^{1}{\frac {{\rm {d}}t}{\sqrt {(1-t^{2})(1-k^{2}t^{2})}}}.\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ef31a3a9cc76ee2baa7df566e2ce7cee3d976778)
它是第一类不完全椭圆积分的特例:
![{\displaystyle K(k)=F(1;\,k)=F\left({\frac {\pi }{2}}\,|\,k^{2}\right)\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/70a65b9f97b3c0d0a6f79c60025f61f451697a1d)
这个特例可以表达为幂级数
![{\displaystyle K(k)={\frac {\pi }{2}}\sum _{n=0}^{\infty }\left[{\frac {(2n)!}{2^{2n}n!^{2}}}\right]^{2}k^{2n}\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/40a1732c09b706f65010964c8eb2d138352b43b8)
它等价于
![{\displaystyle K(k)={\frac {\pi }{2}}\left\{1+\left({\frac {1}{2}}\right)^{2}k^{2}+\left({\frac {1\cdot 3}{2\cdot 4}}\right)^{2}k^{4}+\cdots +\left[{\frac {(2n-1)!!}{(2n)!!}}\right]^{2}k^{2n}+\cdots \right\}.\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/adaa1415b97d76b4b2307931d732a47f6eab945d)
其中
表示双阶乘。利用高斯的超几何函数,第一类完全椭圆积分可以表达为
![{\displaystyle K(k)={\frac {\pi }{2}}\,_{2}F_{1}\left({\frac {1}{2}},{\frac {1}{2}};1;k^{2}\right).\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/161540e195e38d0765545c2543b5b62c4eb0b9ca)
第一类完全椭圆积分有时称为四分周期。它可以利用算术几何平均值來快速计算。
![{\displaystyle K(k)={\frac {\frac {\pi }{2}}{\mathrm {agm} (1,{\sqrt {1-k^{2}}})}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f48479fd17d8db57ac67610f2e50ec10f258ce6f)
![{\displaystyle \Re \left[K(x+y{\rm {i}})\right]={\frac {\pi }{2}}F_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {3}{4}},{\frac {3}{4}},{\frac {5}{4}},{\frac {5}{4}},;;;\\1,{\frac {3}{2}};{\frac {1}{2}};{\frac {3}{2}};\\-y^{2},x^{2}\end{bmatrix}}+{\frac {\pi }{8}}xF_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {1}{4}},{\frac {1}{4}},{\frac {3}{4}},{\frac {3}{4}},;;;\\1,{\frac {1}{2}};{\frac {1}{2}};{\frac {1}{2}};\\-y^{2},x^{2}\end{bmatrix}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd58076843e5f27fd7d415891a57016c2f17042)
![{\displaystyle \Im \left[K(x+y{\rm {i}})\right]={\frac {\pi }{8}}yF_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {3}{4}},{\frac {5}{4}},{\frac {3}{4}},{\frac {5}{4}},;;;\\1,{\frac {3}{2}};{\frac {3}{2}};{\frac {1}{2}};\\-y^{2},x^{2}\end{bmatrix}}+{\frac {9}{64}}\pi xyF_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {5}{4}},{\frac {7}{4}},{\frac {7}{4}},{\frac {5}{4}},;;;\\2,{\frac {3}{2}};{\frac {3}{2}};{\frac {3}{2}};\\-y^{2},x^{2}\end{bmatrix}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/509466b527c33780166165a209e68a8e591b8f6e)
![{\displaystyle K(\pm \infty )=0\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d205caa691b3c0ff5e02fc08066d28c4d28fa240)
![{\displaystyle K(\pm {\rm {i}}\infty )=0\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8463d0390c5b47de1490b0886276ce85e5fe229f)
![{\displaystyle K(0)={\frac {\pi }{2}}\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3ca03cfd968f431d9d2f9d5f5705b2f18d8d3e77)
![{\displaystyle K(1)=\infty \!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/19728bbe94ef245d997abea2ae9cdb43b90a0cf9)
![{\displaystyle K({\frac {\sqrt {2}}{2}})={\frac {8\pi }{\Gamma ^{2}\left(-{\frac {1}{4}}\right)}}{\sqrt {\pi }}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4988fa2f36853be77ed897c4d73d51cb16f1c2bc)
![{\displaystyle K\left({\sqrt {17-12{\sqrt {2}}}}\right)={\frac {(4+2{\sqrt {2}})\pi }{\Gamma ^{2}\left(-{\frac {1}{4}}\right)}}{\sqrt {\pi }}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bfa1db8f0ccee30c4d0a8ee2f70cfa3ac5c846a3)
![{\displaystyle K\left({\frac {{\sqrt {6}}-{\sqrt {2}}}{4}}\right)={\frac {{\sqrt[{3}]{4}}\cdot {\sqrt[{4}]{3}}}{8\pi }}\Gamma ^{3}\left({\frac {1}{3}}\right)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c09f7f77ddcd5609827fc1a1c04170775892dccc)
![{\displaystyle K\left({\frac {{\sqrt {6}}+{\sqrt {2}}}{4}}\right)={\frac {{\sqrt[{3}]{4}}\cdot {\sqrt[{4}]{27}}}{8\pi }}\Gamma ^{3}\left({\frac {1}{3}}\right)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dc60d1b60385175f7231002c813ab3aaf347a3eb)
![{\displaystyle K(i)={\frac {\sqrt {2\pi }}{8\pi }}\Gamma ^{2}\left({\frac {1}{4}}\right)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e29d4537ce6f49c9340af2ef1774563216de20b7)
![{\displaystyle K({\sqrt {2}})={\frac {4{\sqrt {2\pi }}\pi }{\Gamma ^{2}\left({\frac {1}{4}}\right)}}+{\frac {4{\sqrt {2\pi }}\pi }{\Gamma ^{2}\left({\frac {1}{4}}\right)}}{\rm {i}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fb28f8c9de774cf1f109e5978eb179d452589603)
![{\displaystyle K({\rm {i}}k)={\frac {1}{\sqrt {k^{2}+1}}}K\left({\sqrt {\frac {k^{2}}{k^{2}+1}}}\right)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/276e0f06b70879f347ba3905c8702a5eb08d60a9)
其中
![{\displaystyle \Gamma \left({\frac {1}{4}}\right)\approx 3.62561\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1e0782cc4cefbf13e5c43cd466c2c61e4beea087)
![{\displaystyle \Gamma \left({\frac {1}{3}}\right)\approx 2.67893\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a62b3b90e2c2850a09d006b9c10176dc8d8e610c)
第一类完全椭圆积分满足
![{\displaystyle E(k)K'(k)+E'(k)K(k)-K(k)K'(k)={\frac {\pi }{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/16f34956c9833c79b4f893614f1c79c170e11ccf)
![{\displaystyle {\frac {\rm {d}}{{\rm {d}}k}}K^{n}(k)={\frac {nK^{n-1}(k)E(k)}{2k(1-k)}}-{\frac {nK^{n}(k)}{2k}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c51dab86bc6a1898f12db593db803405409f8660)
![{\displaystyle K(k^{2})\approx {\frac {\pi }{2}}+{\frac {\pi }{8}}{\frac {k^{2}}{1-k^{2}}}-{\frac {\pi }{16}}{\frac {k^{4}}{1-k^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/552b7cc8982e877e3dc6faaa86f1dd21b1458de9)
這個近似在k<1/2時相對誤差小於3×10−4,若只保留前兩項則誤差在k<1/2時小於0.01
此函數滿足以下微分方程
![{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} k}}\left[k(1-k^{2}){\frac {\mathrm {d} K(k)}{\mathrm {d} k}}\right]=kK(k)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/db809432b43a7c3f41a1e3de08ff3462a8d05eb0)
此微分方程之另一解為
,此解滿足以下關係。
.
第二类完全椭圆积分
第二类完全椭圆积分
可以定义为
![{\displaystyle E(k)=\int _{0}^{\frac {\pi }{2}}{\sqrt {1-k^{2}\sin ^{2}\theta }}\ {\rm {d}}\theta \!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/acc8f13a19dbfa4f360a9c98c378805317e9e42a)
或者
![{\displaystyle E(k)=\int _{0}^{1}{\frac {\sqrt {1-k^{2}t^{2}}}{\sqrt {1-t^{2}}}}\ {\rm {d}}t.\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f3780f09d30ea4a92c2071d166bbebc7162aea10)
它是第二类不完全椭圆积分的特殊情况:
![{\displaystyle E(k)=E(1;\,k)=E({\frac {\pi }{2}}\,|\,k^{2})\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/66d132a1d6e217a87ebf71e8ec571447400b6a9a)
它可以用幂级数表达
![{\displaystyle E(k)={\frac {\pi }{2}}\sum _{n=0}^{\infty }\left[{\frac {(2n)!}{2^{2n}n!^{2}}}\right]^{2}{\frac {k^{2n}}{1-2n}}\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/15647ca7df18b0ecfe518cbee10ac052684c74b5)
也就是
![{\displaystyle E(k)={\frac {\pi }{2}}\left\{1-\left({\frac {1}{2}}\right)^{2}{\frac {k^{2}}{1}}-\left({\frac {1\cdot 3}{2\cdot 4}}\right)^{2}{\frac {k^{4}}{3}}-\cdots -\left[{\frac {\left(2n-1\right)!!}{\left(2n\right)!!}}\right]^{2}{\frac {k^{2n}}{2n-1}}-\cdots \right\}.\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/be312fce8bf5be9afd473420c32fee44f1eb48ec)
用高斯超几何函数表示的话,第二类完全椭圆积分可以写作
![{\displaystyle E(k)={\frac {\pi }{2}}\,_{2}F_{1}\left(-{\frac {1}{2}},{\frac {1}{2}};1;k^{2}\right).\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a20b1c2f8524c4fa0f1461cc5bace56a34cd43ed)
有如下性质
![{\displaystyle E({\frac {n\pi }{2}};k)=nE(k)\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/abe23cc15c163499e6d19c76da1ea021de30f6ac)
![{\displaystyle n\in \mathbb {Z} \,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72c6a1671b9231101853fed8f7ac477b4d76b133)
![{\displaystyle E(x+y{\rm {i}})=\left\{{\frac {\pi }{2}}F_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {3}{4}},{\frac {5}{4}},{\frac {1}{4}},{\frac {3}{4}},;-;-;\\1,{\frac {3}{2}};{\frac {1}{2}};{\frac {3}{2}};\\-y^{2},x^{2}\end{bmatrix}}-{\frac {\pi }{8}}xF_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {1}{4}},{\frac {3}{4}},-{\frac {1}{4}},{\frac {1}{4}},;-;-;\\1,{\frac {1}{2}};{\frac {1}{2}};{\frac {1}{2}};\\-y^{2},x^{2}\end{bmatrix}}\right\}+{\rm {i}}\left\{-{\frac {\pi }{8}}yF_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {3}{4}},{\frac {5}{4}},{\frac {1}{4}},{\frac {3}{4}},;-;-;\\1,{\frac {3}{2}};{\frac {1}{2}};{\frac {3}{2}};\\-y^{2},x^{2}\end{bmatrix}}-{\frac {3}{64}}\pi xyF_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {5}{4}},{\frac {7}{4}},{\frac {3}{4}},{\frac {5}{4}},;-;-;\\2,{\frac {3}{2}};{\frac {3}{2}};{\frac {3}{2}};\\-y^{2},x^{2}\end{bmatrix}}\right\}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/51572df0f7c4c1a8c60c27676c4b7869c65e4dc9)
![{\displaystyle E(0)={\frac {\pi }{2}}\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/59decc2998ba683cc921bc1664a0d713f23b2fec)
![{\displaystyle E(1)=1\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/49914e192fe33189bed9ca8d744745073c8d5660)
![{\displaystyle E(\infty )={\rm {i}}\infty \,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1f4eafdf91a16bfdcd0a204171b9c336aef3725a)
![{\displaystyle E(-\infty )=\infty \,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d37b85364da157a46880df7f2bb82be3499fcc1)
![{\displaystyle E({\rm {i}}\infty )=({\frac {\sqrt {2}}{2}}-{\frac {\sqrt {2}}{2}}{\rm {i}})\infty \,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5f0149f28d4640c43713216ddb12ab822c2735c9)
![{\displaystyle E({\rm {i}})={\frac {\sqrt {2\pi }}{2\pi }}\Gamma ^{2}\left({\frac {3}{4}}\right)+{\frac {{\sqrt {2\pi }}{\pi }^{2}}{4\pi \Gamma ^{2}\left({\frac {3}{4}}\right)}}={\frac {\pi {\sqrt {2\pi }}}{\Gamma ^{2}\left({\frac {1}{4}}\right)}}+{\frac {\sqrt {2\pi }}{8\pi }}\Gamma ^{2}\left({\frac {1}{4}}\right)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c148c394dfe2bbfd204547418d3c718e1d0b35b3)
![{\displaystyle E(-{\rm {i}}\infty )=({\frac {\sqrt {2}}{2}}+{\frac {\sqrt {2}}{2}}{\rm {i}})\infty \,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c52a558dcd1182f50262235bc980299ae0515ee5)
![{\displaystyle E\left({\tfrac {\sqrt {2}}{2}}\right)=\pi ^{\frac {3}{2}}\Gamma \left({\tfrac {1}{4}}\right)^{-2}+{\tfrac {1}{8{\sqrt {\pi }}}}\Gamma \left({\tfrac {1}{4}}\right)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fe7dd113930edc215e8d29f9ddbdbd30fa7fb387)
![{\displaystyle E\left({\frac {{\sqrt {6}}-{\sqrt {2}}}{4}}\right)={\frac {{\sqrt[{3}]{2}}\cdot \ {\sqrt[{4}]{3}}}{3\Gamma ^{3}\left({\frac {1}{3}}\right)}}{\pi }^{2}+{\frac {{\sqrt[{3}]{4}}\left(3{\sqrt[{4}]{3}}+{\sqrt[{4}]{27}}\right)}{48{\pi }}}\Gamma ^{3}\left({\frac {1}{3}}\right)\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/82e6cd80d6f2ab58725a63f6784b630a1e23c077)
![{\displaystyle E\left({\frac {{\sqrt {6}}+{\sqrt {2}}}{4}}\right)={\frac {{\sqrt[{3}]{2}}\cdot \ {\sqrt[{4}]{27}}}{3\Gamma ^{3}\left({\frac {1}{3}}\right)}}{\pi }^{2}+{\frac {{\sqrt[{3}]{4}}\left({\sqrt[{4}]{27}}-{\sqrt[{4}]{3}}\right)}{16{\pi }}}\Gamma ^{3}\left({\frac {1}{3}}\right)\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/59bba584ba1b826c86ba708a12245a090754fcb4)
![{\displaystyle E({\sqrt {2}}-1)={\frac {\sqrt {\pi }}{8}}\left[{\frac {\Gamma ({\frac {1}{8}})}{\Gamma ({\frac {5}{8}})}}+{\frac {\Gamma ({\frac {5}{8}})}{\Gamma ({\frac {9}{8}})}}\right]\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4daf3feb49c5e32fe906961315e593f9b3216e83)
![{\displaystyle E({\sqrt {2}})={\sqrt {\frac {1}{2\pi }}}\Gamma ^{2}\left({\frac {3}{4}}\right)+{\sqrt {\frac {1}{2\pi }}}\Gamma ^{2}\left({\frac {3}{4}}\right){\rm {i}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1bec7e143f21a52c490b2262b3ac713993490d8e)
其中
![{\displaystyle \Gamma \left({\frac {1}{8}}\right)\approx 7.53394\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ce53897755beab5c106208bd7ebe1091e472f8ee)
![{\displaystyle \Gamma \left({\frac {5}{8}}\right)\approx 1.43452\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d11aa68def8e23cc7639207c0805bdcdb33c727)
![{\displaystyle \Gamma \left({\frac {9}{8}}\right)\approx 0.94174\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e2323eae2ebc1f9db4dcddacb6704996b4b56268)
![{\displaystyle \Gamma \left({\frac {3}{4}}\right)\approx 1.22541\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/796a493e1ae48161e0e9ccee50d3bfe0df69a104)
![{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} k}}E(k)={\frac {E(k)-K(k)}{k}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2a33405f72875433667e855b7ebeccab8d6d94b8)
![{\displaystyle \int E(k){\rm {d}}k={\frac {2}{3}}\left[kK(k)-K(k)+kE(k)+E(k)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2c83e2aa59281b01e21f3f1ce2e41e8fb366c46c)
![{\displaystyle (k^{2}-1){\frac {\mathrm {d} }{\mathrm {d} k}}\left[k\;{\frac {\mathrm {d} E(k)}{\mathrm {d} k}}\right]=kE(k)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/14259fc7b0318212f66c2b207276f8f26d5934e3)
此微分方程之另解為
。
不同
值的第三类完全椭圆积分
第三类完全椭圆积分
可以定义为
![{\displaystyle \Pi (n,k)=\int _{0}^{\frac {\pi }{2}}{\frac {\ {\rm {d}}\theta }{(1-n\sin ^{2}\theta ){\sqrt {1-k^{2}\sin ^{2}\theta }}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8dc9124f36396a43cf3a3a5fc748563730f4bc8d)
注意有时第三类椭圆积分被定义为带相反符号的
,也即
![{\displaystyle \Pi '(n,k)=\int _{0}^{\frac {\pi }{2}}{\frac {\ {\rm {d}}\theta }{(1+n\sin ^{2}\theta ){\sqrt {1-k'^{2}\sin ^{2}\theta }}}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/218527188471176707188050fc46ae38487a2dc9)
用阿佩尔函数可表示为
![{\displaystyle \Pi (m,n)={\frac {\pi }{2}}F_{1}\left({\frac {1}{2}};1,{\frac {1}{2}};1;m,n\right)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bff450a22d8780fc6f927bc7c318f5a0d810dfef)
第三类完全椭圆积分和第一类椭圆积分之间的关系
![{\displaystyle \Pi \left[{\frac {(1+x)(1-3x)}{(1-x)(1+3x)}},{\frac {(1+x)^{3}(1-3x)}{(1-x)^{3}(1+3x)}}\right]-{\frac {1+3x}{6x}}K\left[{\frac {(1+x)^{3}(1-3x)}{(1-x)^{3}(1+3x)}}\right]=\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f193a723b1d1a29a9ebfa2efc6f5e8655c95d1c6)
如
![{\displaystyle ={\frac {3+{\sqrt {6{\sqrt {3}}-9}}}{2}}\Pi \left({\frac {1+{\sqrt {2{\sqrt {3}}-3}}}{2}},{\frac {1}{2}}\right)-\pi {\sqrt {2+{\sqrt {3}}+{\sqrt {7+{\frac {38}{9}}{\sqrt {3}}}}}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c4bb4f45f7524bae660588c3f3568174cf376568)
![{\displaystyle {\frac {\partial }{\partial n}}\Pi (n,k)={\frac {1}{2(k^{2}-n)(n-1)}}\left[E(k)+{\frac {(k^{2}-n)K(k)}{n}}+{\frac {(n^{2}-k^{2})\Pi (n,k)}{n}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2ca439e8b50855b51c094d6c05244bb20ae21be5)
![{\displaystyle {\frac {\partial }{\partial k}}\Pi (n,k)={\frac {k}{n-k^{2}}}\left[{\frac {E(k)}{k^{2}-1}}+\Pi (n,k)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f31355f7b6bf211ba697b4c23f68fdbd1d918045)
![{\displaystyle \Pi (0,0)={\frac {\pi }{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/235d660c05b14c9794587ecaa247cbf04f43300b)
![{\displaystyle \Pi (n,0)={\frac {\pi }{2{\sqrt {1-n}}}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cca824e705cf840687398c0d5e80ed71a5767bfe)
![{\displaystyle \Pi (n,1)=-{\frac {\infty }{\operatorname {sgn} {n-1}}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d65fa9135f7b740899a414085c6321bc3f7d2623)
![{\displaystyle \Pi (n,{\sqrt {n}})={\frac {E(n)}{1-n}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/586fbb04b5543d7909093de97dea81fc4ffea255)
![{\displaystyle \Pi (0,{\sqrt {n}})=K(n)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/50129fe597cf9c09cd02e70fbfc501c523cde91e)
![{\displaystyle \Pi (\pm \infty ,{\sqrt {n}})=0\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/84a5ed3c3cbc46c7aa8fdaf86bf2fbd0956a4d0f)
![{\displaystyle \Pi (n,\pm \infty )=0\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/372f7d079cf1eab669d50f583264971ba9970b26)
勒讓得關係指出了第一类和第二类完全椭圆积分之间的联系:
![{\displaystyle K(k)E\left({\sqrt {1-k^{2}}}\right)+E(k)K\left({\sqrt {1-k^{2}}}\right)-K(k)K\left({\sqrt {1-k^{2}}}\right)={\frac {\pi }{2}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4b540662858eec1818a99b2314dee48d3191bbaf)