邱奇编码是把数据和运算符嵌入到lambda演算内的一种方式,最常见的形式即邱奇数,它使用lambda符号表示自然数。方法得名于阿隆佐·邱奇,他首先以这种方法把数据编码到lambda演算中。
透過邱奇編碼,在其他符号系统中通常被认定为基本的项(比如整数、布尔值、有序对、列表和tagged unions)都會被映射到高阶函数。在無型別lambda演算,函數是唯一的原始型別。
邱奇編碼本身並非用來實踐原始型別,而是透過它來展現我們不須額外原始型別即可表達計算。
很多学数学的学生熟悉可计算函数集合的哥德尔编号;邱奇编码是定义在lambda抽象而不是自然数上的等价运算。
邱奇数為使用邱奇编码的自然数表示法,而用以表示自然数的高阶函数是個任意函数映射到它自身的n重函数复合之函数,簡言之,數的「值」即等價於參數被函數包裹的次數。
不論邱奇數為何,其都是接受兩個參數的函數。
就是说,自然数被表示为邱奇数n,它对于任何lambda-项F
和X
有着性质:
- n
F X
=β Fn X
。
在 lambda 演算中,数值函数被表示为在邱奇数上的相应函数。这些函数在大多数函数式语言中可以通过 lambda 项的直接变换来实现(服从于类型约束)。
加法函数 利用了恒等式 。
- plus ≡
λm.λn.λf.λx. m f (n f x)
后继函数 β-等价于(plus 1)。
- succ ≡
λn.λf.λx. f (n f x)
乘法函数 利用了恒等式 。
- mult ≡
λm.λn.λf. n (m f)
指数函数 由邱奇数定义直接给出。
- exp ≡
λm.λn. n m
前驱函数 通过生成每次都应用它们的参数 g
于 f
的 重函数复合来工作;基础情况丢弃它的 f
复本并返回 x
。
- pred ≡
λn.λf.λx. n (λg.λh. h (g f)) (λu. x) (λu. u)
* 注意在邱奇編碼中,
以下列定義可實作自然數的除法
計算 除以 的遞迴相減時,將會計算很多次的beta歸約。除非以紙筆手工來做,那麼多步驟倒無關緊要,
但我們不想一直重複瑣碎的歸約;而判別數字是否為零的函式是 IsZero,所以考慮下列條件:
這個判別式相當於 小於等於 而非 小於 。如果使用這式子,那麼要將上面給出的除法定義,
轉化為邱奇編碼的自然數函數如下,
這樣的定義只呼叫了一次 減去 ,正如我們所想的。然而問題是這式子計算成錯誤的結果,
是 (n-1)/m 除法的商。要更正則需在呼叫 divide 之前把 再加回 1。 因此除法的正確定義是,
divide1 是一個內含遞迴的定義式,要以 Y 組合子來發生遞迴作用。 所以要再宣告一個名為 div 的新函數;
- 等號左側為 divide1 → div c
- 等號右側為 divide1 → c
要獲得
那麼
而式中所用的其它函式定義如下列:
-
使用倒斜線 \ 代替 λ 符號,完整的除法函式則如下列,
divide = (\n.((\f.(\x.x x) (\x.f (x x))) (\c.\n.\m.\f.\x.(\d.(\n.n (\x.(\a.\b.b)) (\a.\b.a)) d ((\f.\x.x) f x) (f (c d m f x))) ((\m.\n.n (\n.\f.\x.n (\g.\h.h (g f)) (\u.x) (\u.u)) m) n m))) ((\n.\f.\x. f (n f x)) n))
大部分真實世界的程式語言都提供原生於機器的整數,church 與 unchurch 函式會在整數及與之對應的邱奇數間轉換。這裡使用Haskell撰寫函式, \
等同於lambda演算的 λ。 用其它語言表達也會很類似。
type Church a = (a -> a) -> a -> a church :: Integer -> Church Integer church 0 = \f -> \x -> x church n = \f -> \x -> f (church (n-1) f x) unchurch :: Church Integer -> Integer unchurch cn = cn (+ 1) 0
邱奇布尔值是布尔值真和假的邱奇编码形式。某些程式語言使用這個方式來實踐布爾算術的模型,Smalltalk 即為一例。
布爾邏輯可以想成二選一,而布尔值則表示为有两个参数的函数,它得到两个参数中的一个:
邱奇布爾值在lambda演算中的形式定义如下:
由於真、假 可以選擇第一個或第二個參數,所以其能夠由組合來產生邏輯運算子。注意到 not 版本因不同求值策略而有兩個。下列為从邱奇布尔值推导来的布尔算术的函数:
註:
- 1 求值策略使用應用次序時,這個方法才正確。
- 2 求值策略使用正常次序時,這個方法才正確。
下頭為一些範例:
- ^ This formula is the definition of a Church numeral n with f -> m, x -> f.