Enzymkinetik – Wikipedia
Die Enzymkinetik ist ein Teilgebiet der biophysikalischen Chemie. Sie beschreibt, wie schnell enzymkatalysierte chemische Reaktionen verlaufen. Die Enzymkinetik findet breite Anwendung in Biologie und Medizin, da auch biologische Substrate (Reaktionspartner) – darunter solche, die im Menschen auftreten – untersucht werden. Ein Hauptziel der Enzymkinetik ist die Beschreibung der Konzentrationsabhängigkeit der Reaktionsgeschwindigkeit mit geeigneten Formeln, sowie die Bestimmung der dazugehörigen Parameter für ein bestimmtes Protein (Enzymaktivität und katalytische Effizienz). Da Enzyme dazu dienen, Reaktionen zu beschleunigen und zu lenken, ist die enzymkinetische Analyse zum Verständnis von Enzymfunktionen unerlässlich.
Theorie für Enzyme mit einer Substratbindungsstelle
[Bearbeiten | Quelltext bearbeiten]Der Erste, der den Zusammenhang zwischen Substrat-Konzentration und Umsatzgeschwindigkeit eines Enzymes beschrieb, war der französische Physikochemiker Victor Henri 1902. Allerdings war die Bedeutung der Wasserstoffionenkonzentration für enzymatische Reaktionen damals noch nicht bekannt, erst nachdem Sørensen 1909 den pH-Wert definiert und die Pufferung eingeführt hatte, konnten der Deutsche Leonor Michaelis und seine kanadische Post-Doktorandin Maud Menten 1913 die Ergebnisse Henris experimentell bestätigen.[1] Die Henri-Michaelis-Menten-Gleichung wurde 1925 von G. E. Briggs und J. B. S. Haldane verallgemeinert (Michaelis-Menten-Theorie).
Henris Schlüsselidee war, die enzymatische Reaktion in zwei Phasen zu zerlegen, die Bindung des Substrates S an das Enzym E und die Umsetzung des resultierenden Enzym-Substrat-Komplexes ES in Enzym und Produkt P:
- (1)
Hierbei sind Geschwindigkeitskonstanten, die bei der kinetischen Herleitung des Massenwirkungsgesetzes (MWG) verwendet werden.[2] Zur Beschreibung eines Reaktionsgleichgewichts der Bindungsreaktion hat die Gleichheit der Geschwindigkeiten von Hin- und Rückreaktion die Form:
wobei die Konzentration der Substanz bezeichnet. Durch die angegebenen mathematischen Operationen entsteht für die Bindungsreaktion die eingeführte Formulierung des MWGs:
- (2)
Da die (nach Standard im Zähler notierten) Reaktionsprodukte aus einer Dissoziation des Enzym-Substrat-Komplexes hervorgehen, wird die Gleichgewichtskonstante als Dissoziationskonstante bezeichnet.
Wie aus Gleichung (2) hervorgeht, hat die Dimension einer Konzentration. Für die Substratkonzentration ist die Hälfte aller Enzymmoleküle an Substrat gebunden, die andere Hälfte ist frei; dies wird als Halbsättigung des Enzyms bezeichnet. (Die Weiterreaktion bleibt zunächst außer Betracht.)
Rechnung hierzu |
Einsetzen von :
|
ist umgekehrt proportional zur Affinität des Enzymes für das Substrat: Je besser das Enzym das Substrat bindet, umso niedriger ist die für eine Halbsättigung des Enzyms erforderliche Substratkonzentration.
Zur Beschreibung eines Reaktionsgleichgewichts der Reaktion (1) insgesamt hat die Gleichheit der Geschwindigkeiten von Hin- und Rückreaktion die Form:
hierbei ist die Geschwindigkeitskonstante der (als nicht umkehrbar vorausgesetzten) Reaktion . Durch die angegebenen mathematischen Operationen entsteht für die Reaktion (1) die eingeführte Formulierung des MWGs:
- (3)
heißt Michaelis-Menten-Konstante. Zur Beschreibung der Reaktionsgeschwindigkeit der betrachteten Katalyse wird (für entsprechend geeignete Fälle) weiter vorausgesetzt:
- Die Konzentration des insgesamt vorhandenen Enzyms ändert sich nicht und ist die Summe aus den Konzentrationen substratgebundenen und freien Enzyms, also .
- Die katalysierte Reaktion ist erster Ordnung, so dass ihre Geschwindigkeit zur Konzentration des Enzym-Substrat-Komplexes proportional ist, also .
- Eine maximale Reaktionsgeschwindigkeit wird als Rechengröße eingeführt. Diese entspricht dem fiktiven Fall, dass sämtliches vorhandenes Enzym als Enzym-Substrat-Komplex vorliegt, also .
Durch Einführung dieser Bedingungen lässt sich (3) in die Michaelis-Menten-Gleichung umformen, die in Abhängigkeit von der Substratkonzentration darstellt:
Umformung |
Michaelis-Menten-Gleichung |
Der Graph dieser Gleichung ist Teil einer Hyperbel, die sich für zunehmende der waagerechten Asymptote nähert.
Rechnung zur Klassifikation des Graphen als Teil einer Hyperbel; Betrachtung der Asymptoten |
A. Da und Konstanten sind, ist die Funktion eine Hyperbel mit der waagerechten Asymptote für und der senkrechten Asymptote für .
da durch eine Verkettung von Kongruenzabbildungen aus erzeugt werden kann, ist ebenfalls eine Hyperbel. Der Graph der Michaelis-Menton-Gleichung ist die Teilmenge von , für die ist. B. Die beiden zuerst genannten Kongruenzabbildungen ändern nichts an der waagerechten Asymptote der Hyperbel, die letztgenannte verschiebt sie um in -Richtung. Also hat die Asymptote für ; der in enthaltenen Graphen der Michaelis-Menton-Gleichung strebt für gegen diese Asymptote. Die zuerst genannte Kongruenzabbildungen verschiebt die senkrechte Asymptote der Hyperbel um in -Richtung, die beiden letztgenannten ändern nichts an ihr. Also hat die Asymptote für . |
Wie aus Gleichung (3) hervorgeht, hat auch die Dimension einer Konzentration. Für die Substratkonzentration ist .
Rechnung hierzu |
Einsetzen von in die Michaelis-Menton-Gleichung: . |
Zur Bestimmung von und aus Messreihen von und dienen computergestützte Verfahren wie die nichtlineare Regressionsanalyse (Simplex- oder Levenberg-Marquardt-Verfahren). Graphische Extrapolationsverfahren (Linearisierungen) wie etwa die doppelt-reziproke Auftragung nach Lineweaver und Burk sollten dafür nicht verwendet werden, da sie zu ungenau sind. Sie eignet sich jedoch sehr gut zur Präsentation der Ergebnisse enzymkinetischer Versuche.
Theorie für Enzyme mit mehreren Substratbindungsstellen
[Bearbeiten | Quelltext bearbeiten]Die Hill-Gleichung und ihre Herleitung aus dem Massenwirkungsgesetz
[Bearbeiten | Quelltext bearbeiten]Die Hill-Gleichung wurde ursprünglich von Archibald Vivian Hill eingeführt, um die Sauerstoffbindung an Hämoglobin in Abhängigkeit von verschiedenen Sauerstoffkonzentrationen mathematisch zu beschreiben.[3] Die hier beschriebene Hill-Gleichung ist eine andere als die Hill-Gleichung zur Beschreibung der Muskelkontraktion, an deren Erstellung der gleiche Autor beteiligt war.[4]
Obwohl die Bindung von Sauerstoff an Hämoglobin kein katalytischer Vorgang ist, lässt sich mit einer Hill-Gleichung auch die Kinetik enzymatischer Katalysen beschreiben, insbesondere auch solcher, deren Kinetik sich nicht mit einer Michaelis-Menten-Gleichung beschreiben lässt. Hier folgt eine Herleitung der Hill-Gleichung aus dem Massenwirkungsgesetz, die die Analogie zur Herleitung der Michaelis-Menten-Gleichung hervorhebt. Entsprechend bedeutet die Variable die Anzahl der Bindungsstellen, die ein Molekül Enzym für je ein Molekül Substrat bereithält, und ist damit eine positive natürliche Zahl. Die experimentell gefundenen Werte von weichen hiervon ab (s. u. "Der empirische Hill-Koeffizienten als Maß der Kooperativität von Enzymen").
Die Bindung von Molekülen Substrat an ein Enzym lässt sich modellieren mit:
- (1')
Wie in Gleichung (1) sind Geschwindigkeitskonstanten, die bei der kinetischen Herleitung des Massenwirkungsgesetzes (MWG) verwendet werden. Zur Beschreibung eines Reaktionsgleichgewichts der Bindungsreaktion hat die Gleichheit der Geschwindigkeiten von Hin- und Rückreaktion die Form:
hierbei ist die Konzentration freien Enzyms, die Substratkonzentration, die Konzentration der Enzym-Substrat-Komplexe mit Molekülen Substrat. Der Exponent heißt Hill-Koeffizient. Durch die angegebenen mathematischen Operationen entsteht für die Bindungsreaktion die eingeführte Formulierung des MWGs:
- (2')
Analog der Dissoziationskonstante in Gleichung (2) heißt scheinbare Dissoziationskonstante. Das Adjektiv "scheinbar" trägt der Tatsache Rechnung, dass die experimentell gemessenen Werte für von den nach diesem Modell zu erwartenden abweichen.
Wie aus Gleichung (2') hervorgeht, hat die (neu einzuführende) Konstante
- (3')
die Dimension einer Konzentration. Für die Substratkonzentration ist die Hälfte aller Enzymmoleküle an Substrat gebunden, die andere Hälfte ist frei; dies wird als Halbsättigung des Enzyms bezeichnet.
Rechnung |
Gleichsetzen der Gleichungen (2') und (3') ergibt: Einsetzen von :
|
wird daher als Halbsättigungskonstante bezeichnet[5] und auch (für „50%“) geschrieben. ist (wie die Konstante der Michaelis-Menten-Gleichung) umgekehrt proportional zur Affinität des Enzymes für das Substrat: Je besser das Enzym das Substrat bindet, umso niedriger ist die für eine Halbsättigung des Enzyms erforderliche Substratkonzentration.
Wenn weiter vorausgesetzt wird,
- dass sich die Konzentration des insgesamt vorhandenen Enzyms nicht ändert und die Summe aus den Konzentrationen substratgebundenen und freien Enzyms ist, also ,
dann ist der Anteil substratgebundenen Enzyms an insgesamt vorhandenem mit Gleichung (2'):
- Hill-Gleichung
Rechnung |
Hill-Gleichung |
Um mit der Hill-Gleichung die Reaktionsgeschwindigkeit der Katalyse durch ein Enzym mit mehreren Bindungsstellen zu beschreiben, ist hinreichend, weiter vorauszusetzen:
- Eine maximale Reaktionsgeschwindigkeit wird als Rechengröße eingeführt. Diese entspricht dem fiktiven Fall, dass sämtliches vorhandene Enzym als Enzym-Substrat-Komplex vorliegt, also .
- ist zum Anteil substratgebundenen Enzyms an insgesamt vorhandenem proportional.
Dann hat die Proportionalität die Form
- (4)
Rechnung |
Wegen der vorausgesetzten Proportionalität von und zu existiert ein Proportionalitätsfaktor so, dass:
Damit ist das Verhältnis von zu :
|
Gleichsetzen mit der Hill-Gleichung ergibt eine Gleichung, die in Abhängigkeit von der -ten Potenz der Substratkonzentration darstellt:
- (5)
Rechnung |
Gleichsetzen von Gleichung (4) mit der Hill-Gleichung ergibt: (5) |
Die Herleitung der Gleichung (5) ist der Herleitung der Michaelis-Menten-Gleichung größtenteils analog. Unterschiede sind:
- Die Geschwindigkeitskonstante der katalysierten Reaktion wird nicht in die Herleitung von Gleichung (5) einbezogen: hängt im Gegensatz zu formal nicht von ab.
- Die Ordnung der katalysierten Reaktion wird bei der Herleitung von (5) nicht explizit betrachtet.
Statt der beiden letztgenannten Voraussetzungen geht die in Gleichung (4) formulierte Proportionalität in die Herleitung ein; ein abstrakter Proportionalitätsfaktor tritt an die Stelle von .
Weitere Darstellung für θ und für v. Die Sättigungsfunktion
[Bearbeiten | Quelltext bearbeiten]In der Hill-Gleichung ist von und von abhängig, selbst aber auch von (siehe Gleichung (2')). Das Verhalten der Gleichung in Abhängigkeit von ist einheitlicher darstellbar (s. u. halblogarithmisch aufgetragene Graphen), wenn durch ersetzt wird:
- (6)
Umformung |
Einsetzen von (3'): in die Hill-Gleichung ergibt: mit erweitern und im Zähler und Nenner kürzen: (6) |
Gleichsetzen der Gleichungen (4) und (6) ergibt eine Darstellung von , die ebenfalls nicht mehr enthält:
- (7)
Rechnung |
Gleichsetzen der Gleichungen (4) und (6) ergibt:
|
Wenn an ein Molekül Enzym Moleküle Substrat gebunden sind und die Konzentration der Enzym-Substrat-Komplexe ist, so ist die Konzentration des gebundenen Substrats . Als Sättigungsfunktion wird das Verhältnis der Konzentration gebundenen Substrats zur Konzentration des insgesamt vorhandenen Enzyms bezeichnet:[6]
Der Zusammenhang zur Hill-Gleichung ist wegen gegeben mit
- (8)
Der empirische Hill-Koeffizienten nH als Maß der Kooperativität von Enzymen
[Bearbeiten | Quelltext bearbeiten]Gemäß Herleitung der Hill-Gleichung aus dem Massenwirkungsgesetz (s. o.) ist der Hill-Koeffizient die Anzahl der Bindungsstellen eines Enzyms und daher eine natürliche Zahl. (Genau) für sind die Konstanten und gleich. Auch sind genau für die Gleichungen (5) und (7) einer Michaelis-Menten-Gleichung äquivalent, indem die Konstante als Michaelis-Menten-Konstante aufgefasst wird.
Rechnung für Gleichung (7) |
(7)
Michaelis-Menten-Gleichung |
Zu Unterscheidung von wird mit der Variable derjenige Hill-Koeffizient bezeichnet, für den die Hill-Gleichung die Kinetik eines solchen Enzyms empirisch am besten beschreibt. ist in der Regel kleiner als und keine natürliche Zahl. Die Theorie der Hill-Gleichung ist bei Verwendung von nur dann mathematisch konsistent, wenn in allen zur Beschreibung der Kinetik verwendeten Gleichungen durch ersetzt wird. (9)
In Folgenden seien die Konstanten und in allen zu vergleichenden Situationen der jeweils betrachteten Enzyme gleich. Der Unterschied zwischen und wird dadurch erklärt, dass Enzyme mit mehreren Substratbindungsstellen aus mehreren Untereinheiten bestehen, die jeweils eine Bindungsstelle tragen und demzufolge für sich betrachtet mit und also einer Michaelis-Menten-Gleichung beschrieben werden können.
Ein als positive Kooperativität bezeichnetes Zusammenwirken der Untereinheiten kann aber auch bewirken, dass ein solches Enzym bei einer vorgegebenen Substratkonzentration schneller reagiert, als gemäß einer Michaelis-Menten-Gleichung (mit ) zu erwarten wäre. Eine Hill-Gleichung beschreibt für Konzentrationen genau dann positive Kooperativität, wenn ist. Weiter reagiert ein Enzym bei positiver Kooperativität bei einer vorgegebenen Substratkonzentrationen umso schneller, je größer ist. Logische Obergrenze für ist (die Anzahl der Bindungsstellen) .
Ganz entsprechend kann ein als negative Kooperativität bezeichnetes Zusammenwirken von Untereinheiten eines Enzyms bewirken, dass jenes bei einer vorgegebenen Substratkonzentration langsamer reagiert, als gemäß einer Michaelis-Menten-Gleichung (mit ) zu erwarten wäre. Eine Hill-Gleichung beschreibt für Konzentrationen genau dann negative Kooperativität, wenn ist, und bei einer vorgegebenen Substratkonzentrationen reagiert ein Enzym bei negativer Kooperativität umso langsamer, je kleiner ist.
Beweis |
Die folgende Ungleichung (i) verwendet Gleichung (7) zur Berechnung der Geschwindigkeiten zweier Enzyme, deren Situationen sich ausschließlich im Hill-Koeffizienten bzw. unterscheiden. Die folgenden Äquivalenzumformungen führen (i) auf die im Text genannten Bedingungen zurück.
der übersichtlicheren Schreibweise dient die Substitution . Nach (notwendiger) zusätzlicher Voraussetzung gilt
denn für die Überlegung kann vorausgesetzt werden. Einsetzen ergibt:
|
Ein Enzym mit mehreren Bindungsstellen, bei dem ein solches Zusammenwirken der Untereinheiten nicht zu beobachten ist, heißt nicht kooperativ.
Kooperativität ist nicht nur für Enzyme beschrieben, sondern auch für Nicht-Enzym-Proteine, an die mehrere andere Moleküle binden (s. o. Herleitung der Hill-Gleichung). Für die koordinative Bindung von Sauerstoff an Hämoglobin, das aus je ein Sauerstoffmolekül bindenden Untereinheiten besteht, wurde ein Hill-Koeffizient von 2,8 bestimmt.[7]
Berechnung von nH
[Bearbeiten | Quelltext bearbeiten]Sind die Substratkonzentrationen bzw. bekannt, bei denen ein Enzym mit 10 % bzw. 90 % seiner Maximalgeschwindigkeit reagiert, so lässt sich sein empirischer Hill-Koeffizient bestimmen:
Verallgemeinerung: Sind zwei beliebige verschiedene Substratkonzentrationen bzw. bekannt, bei denen ein Enzym mit 0%< P% <100% bzw. 0%< Q% <100% seiner Maximalgeschwindigkeit reagiert, so ist sein empirischer Hill-Koeffizient durch den folgenden Quotienten gegeben:
Herleitung |
A. Mit Überlegung (9) ist bei Betrachtung des empirischen Hill-Koeffizienten in Gleichung (6) durch zu ersetzen. Die folgenden Umformungen lösen die entstehende Gleichung nach auf:
B. Mit Gleichung (4): ist außer durch die Hill-Gleichung auch durch den Anteil der gemessenen Reaktionsgeschwindigkeit an der Maximalgeschwindigkeit gegeben; dieser Anteil kann als Prozentsatz oder als Dezimalzahl angegeben sein. - Einsetzen von für bzw. von für in (i) ergibt:
C. (ii) und (iii) ergeben die Proportionalität: Mit einem Logarithmus zu einer wählbaren Basis und der Rechenregel für den Logarithmus einer Potenz:
D. Verallgemeinerung: Für zwei beliebige verschiedene Anteile bzw. von und den zugehörigen Substratkonzentrationen bzw. ergibt der gleiche Rechenweg:
wobei der Bruch im letzten Schritt mit erweitert wurde; mit Division durch den (nach Konstruktion von null verschiedenen) Faktor folgt die angegebene Formel. |
Nicht linearisierte Graphen
[Bearbeiten | Quelltext bearbeiten]Direkt-lineare Auftragung einer Enzymkinetik nach Michaelis-Menten
[Bearbeiten | Quelltext bearbeiten]Enzymkinetische Parameter lassen sich bequem und präzise direkt aus einer Sättigungshyperbel gemäß der Abbildung herleiten („direkt-lineare Auftragung“ auch „Cornish-Bowden-Diagramm“ genannt). In dieser Hyperbel ist die enzymatische Umsatzgeschwindigkeit (Ordinate) als Funktion der Substratkonzentration (Abszisse) dargestellt.
Für die direkt-lineare Auftragung überträgt man die Anfangsgeschwindigkeiten des enzymatischen Umsatzes direkt in das --Diagramm. Die -Werte sind vor Versuchsbeginn bekannt (eingestellte Substratkonzentrationen); während der Versuchsreihe ist dann der Ordinatenwert für (die Anfangsgeschwindigkeit) nachzutragen. Aus der maximalen Umsatzgeschwindigkeit lässt sich die halbe maximale Umsatzgeschwindigkeit ableiten. Graphisch kann man daraus den Koordinatenwert für ermitteln. Die katalytische Effizienz folgt übrigens aus der Steigung der Tangente an den Ursprung: ; daraus ergibt sich .
Berechnung der Steigung der Tangente an den Ursprung |
Die Funktionsgleichung der Hyperbel ist die Michaelis-Menten-Gleichung
die Steigung der Tangente an den Ursprung kann als Grenzwert einer Sekantensteigung aufgefasst werden, die durch einen Differenzenquotienten gegeben ist. Das ergibt bei Näherung von rechts:
|
Die Fehlerbehandlung wird im direkt-linearen Plot weitgehend vereinfacht: Mittelwertsbildung gibt dann die wahrscheinlichen Werte für die Parameter und . Bei Inspektion der Streubreite der Messpunkte (nicht identisch mit deren Standardabweichung) können Ausreißer leicht identifiziert und sogenannte Mediane abgelesen werden.
An dieser Stelle sei erwähnt, dass alle (auch die nachfolgenden) Auswertungsverfahren nicht nur für Enzyme, sondern auch für die Bindungsvorgänge von Carriern oder Rezeptoren Gültigkeit haben. Historisch gesehen wurden all diese Methoden (Hanes und Eadie-Hofstee-Auftragung für Enzyme, Scatchard und Hill-Auftragungen für Carrier) ursprünglich von Woolf entwickelt.
Direkt-linear aufgetragene Graphen einer Enzymkinetik nach Hill für unterschiedliche Werte von nH
[Bearbeiten | Quelltext bearbeiten]Die aus der Hill-Gleichung hergeleitete Gleichung (5) lässt sich als eine Funktion auffassen, die die empirisch gefundene Reaktionsgeschwindigkeit abhängig von der Substratkonzentration beschreibt. Nach Überlegung (9) ist bei der Formulierung der Funktion durch zu ersetzen:
f([S]) ist überall streng monoton steigend und nähert sich für zunehmende der waagerechten Asymptote . Der Graph von f([S]) zeigt aber je nach Wert von unterschiedliches Verhalten:[8]
- Für ist er Teil einer Hyperbel, da Gleichung (5) genau dann einer Michaelis-Menten-Gleichung äquivalent ist (s. o.).
- Für hat er genau einen Wendepunkt bei . Unter Mitberücksichtigung ihres Steigungsverhaltens ist daher in diesem Fall eine Sigmoidfunktion. Der Fall lässt sich von den Fällen und durch bloße Betrachtung des Funktionsgraphen unterscheiden.
- Für hat er keinen Wendepunkt und sieht einem Teil einer Hyperbel ähnlich. Ein solcher Graph heißt pseudohyperbol, weil sich der Fall vom Fall durch bloße Betrachtung des Graphen nicht unterscheiden lässt.
Rechnerische Nachweise |
Vorüberlegungen:
A. Für beliebige ergibt die Konvergenz der Potenzfunktion:
B. Die Ableitung ist mit (i) und (iii) überall positiv für , sodass für alle streng monoton steigt. Zusätzliche Berücksichtigung von und zeigt, dass im gesamten Definitionsbereich streng monoton steigt, wie behauptet. C. Die Wendepunkte von sind genau die Nullstellen mit Vorzeichenwechsel der zweiten Ableitung
Da für nicht definiert ist, wechselt in nicht das Vorzeichen, und hat bei keinen Wendepunkt. Außer gilt für alle Wendepunkte:
Mit (ii) hat Gleichung (iv) genau dann eine Lösung, wenn ist, und dann genau eine (d. h. ihre Lösung ist eindeutig, falls sie existiert). Mit ist für , sodass keine Lösung von (iv) existiert und keinen Wendepunkt hat, wie behauptet. Mit ist für , sodass dann genau eine Lösung von Gleichung (iv) existiert; hat bei nach (ii) höchstens einen Wendepunkt. Zu zeigen bleibt, dass in das Vorzeichen wechselt. Da die Bestimmung der dritten Ableitung recht aufwendig ist, wird hier das Verhalten von in einer Umgebung ihrer Nullstellen untersucht. Für beliebige sind Potenzfunktionen streng monoton steigend. Also gilt für beliebige , für die ist:
Für eine geeignete -Umgebung von ist also für alle (v) Mit zeigen ausgehend von die entsprechenden Umformungen, dass für alle ist. Letzteres zeigt zusammen mit (v) den Vorzeichenwechsel von in . |