Microvision
This article needs additional citations for verification. (March 2023) |
Also known as | Milton Bradley Microvision MB Microvision |
---|---|
Manufacturer | Milton Bradley Company |
Type | Handheld game console |
Generation | Second generation |
Release date | November 1979 |
Introductory price | US$49.99 (equivalent to about $210 in 2023) |
Discontinued | 1981 |
Media | ROM cartridges |
CPU | Intel 8021/TI TMS1100 (on cartridge) clocked at 100 kHz |
Memory | 64 bytes RAM, 2K ROM |
Display | 16 × 16 pixels resolution |
Power | 1 × 9V battery (TMS1100 processors), 2 × 9V battery (Intel 8021 processors) |
The Microvision (aka Milton Bradley Microvision or MB Microvision) is the first handheld game console that used interchangeable cartridges[1][2] and in that sense is reprogrammable.[3] It was released by the Milton Bradley Company in November 1979[4] for a retail price of $49.99,[5][6] equivalent to $212.00 in 2023.
The Microvision was designed by Jay Smith, the engineer who would later design the Vectrex video game console.[2] The Microvision's combination of portability and a cartridge-based system led to moderate success, with Smith Engineering grossing $15 million in the first year of the system's release. However, very few cartridges, a small screen, and a lack of support from established home video game companies led to its demise in 1981.[7] According to Satoru Okada, the former head of Nintendo's R&D1 Department, the Microvision gave birth to Game Boy, the follow-up to Game & Watch, after Nintendo designed around Microvision's limitations.[8]
Production
[edit]Unlike most later consoles, the Microvision did not contain an onboard processor (CPU). Instead, each game included its own processor contained within the removable cartridge.[9][10][11] This meant that the console itself effectively consisted of the controls, LCD panel and LCD controller.[9][11]
The processors for the first Microvision cartridges were made with both Intel 8021 (cross licensed by Signetics) and Texas Instruments TMS1100 processors. Due to purchasing issues, Milton Bradley switched to using TMS1100 processors exclusively including reprogramming the games that were originally programmed for the 8021 processor. The TMS1100 was a more primitive device, but offered more memory and lower power consumption than the 8021. First-revision Microvisions needed two batteries due to the 8021's higher power consumption, but later units (designed for the TMS1100) only had one active battery holder. Even though the battery compartment was designed to allow the two 9-volt batteries to be inserted with proper polarity of positive and negative terminals, when a battery was forcefully improperly oriented, while the other battery was properly oriented, the two batteries would be shorted and they would overheat. The solution was to remove terminals for one of the batteries to prevent this hazard. Due to the high cost of changing production molds, Milton Bradley did not eliminate the second battery compartment, but instead removed its terminals and called it a spare battery holder.[citation needed]
Problems
[edit]Microvision units and cartridges are now somewhat rare.[12][13] Those that are still in existence are susceptible to three main problems: "screen rot," ESD damage, and keypad destruction.
Screen rot
[edit]The manufacturing process used to create the Microvision's LCD was primitive by modern standards. Poor sealing and impurities introduced during manufacture have resulted in the condition known as screen rot. The liquid crystal spontaneously leaks and permanently darkens, resulting in a game unit that still plays but is unable to properly draw the screen. While extreme heat (such as resulting from leaving the unit in the sun), which can instantly destroy the screen, can be avoided, there is nothing that can be done to prevent screen rot in most Microvision systems.[3]
ESD damage
[edit]A major design problem on early units involves the fact that the microprocessor (which is inside the top of each cartridge) lacks ESD protection and is directly connected to the copper pins which normally connect the cartridge to the Microvision unit. If the user opens the protective sliding door that covers the pins, the processor can be exposed to any electric charge the user has built up. If the user has built up a substantial charge, the discharge can jump around the door's edge or pass through the door itself (dielectric breakdown). The low-voltage integrated circuit inside the cartridge is extremely ESD sensitive, and can be destroyed by an event of only a few dozen volts which cannot even be felt by the person, delivering a fatal shock to the game unit. This phenomenon was described in detail by John Elder Robison (a former Milton Bradley engineer) in his book Look Me in the Eye; Robinson described the issue as having been a significant enough issue during the 1979 holiday season (with up to 60% of units being returned as defective) that it resulted in significant panic among Milton Bradley staff and required extensive modifications to both later Microvision units and Microvision factories (the former being of his own design) to better dispel stray static charges.[14]
Keypad destruction
[edit]The Microvision unit had a twelve-button keypad, with the switches buried under a thick layer of flexible plastic. To align the user's fingers with the hidden buttons, the cartridges had cutouts in their bottom (over the keypad). As different games required different button functions, the cutouts were covered with a thin printed piece of plastic, which identified the buttons' functions in that game. The problem with this design is that pressing on the buttons stretched the printed plastic, resulting in the thin material stretching and eventually tearing. Having long fingernails exacerbated the condition. Many of the initial games were programmed to give feedback of the keypress when the key was released instead of when the key was pressed. As a result, users may press on the keypad harder because they are not being provided with any feedback that the key has been pressed. This resulted from a keypad used for prototyping being different from the production keypad; the prototyping keypad had tactile feedback upon key pressing that the production units lacked.[citation needed]
Technical specifications
[edit]This section needs additional citations for verification. (August 2020) |
- CPU: Intel 8021/TI TMS1100 (on cartridge)
- Screen type and resolution: 16 × 16 pixel LCD[2][6]
- Register width: 4 bit (TMS1100), 8 bit (8021)
- Processor speed: 100 kHz
- RAM (integrated into CPU): 64 bytes
- ROM: 2K (TMS1100), 1K (8021)
- Cartridge ROM: 2K (TMS 1100), 1K (8021) masked (integrated into CPU; each game's CPU was different)
- Video Display Processor: LCD Custom Driver (made by Hughes)
- Sound: Piezo beeper
- Input: Twelve button keypad, one paddle
- Power requirements: One or two 9 volt batteries on earlier Microvision consoles, one 9 volt battery on later Microvision consoles
- Power Dissipation: 110 mW (TMS 1100), 1 W (8021)
Games
[edit]While the game cartridge plastic cases were beige colored in the USA, in Europe they came in a variety of different colors, and the games were numbered on the Box. The age range in Europe for the console and its games was from 8 to 80 years old or 8 to Adult.
There were 12 titles known to have been released.
- Background shading indicates canceled games.
# | US title | Overseas titles | Game number (EU) | Release date | Microprocessor/s[15] | PCB Revision(s) |
---|---|---|---|---|---|---|
1 | Block Buster 4952 | Block Buster Block Buster Block Buster Block Buster Casse Brique | 1 1 1 1 1 | November 1979 | TI MP3450A | 4952 REV A 4952-56 REV A 4952-79 REV B |
2 | Bowling 4972 | Bowling Bowling Bowling Bowling Bowling | 2 2 2 2 2 | November 1979 | TI MP3475NLL | 4952 REV A |
3 | Connect Four 4971 | Connect 4 4 Gewinnt Vier Op'n Rij Forza 4 Puissance 4 | 5 5 5 5 5 | November 1979 | Signetics Intel 8021 TI MP3481NLL | 4971 REV C 4952 REV - |
4 | Pinball 4974 | Pinball Pinball Flipper Flipper Flipper | 4 4 4 4 4 | November 1979 | TI MP3455NLL | 4952 REV A |
5 | Mindbuster 4976 | N/A | N/A | 1979 | TI MP3457NLL | 4952 REV A |
6 | Star Trek: Phaser Strike (later just Phaser Strike) 4973 | Shooting Star Shooting Star Shooting Star Shooting Star Shooting Star | 3 3 3 3 3 | 1979 | TI MP3454NLL | 4952 REV A |
7 | Vegas Slots 4975 | N/A | N/A | 1979 | TI MP3474-NLL | 4952-56 REV - |
8 | Baseball 4974 | N/A | N/A | 1980 | TI MP3479-N1NLL | 4952-56 REV - |
9 | Sea Duel 4064 | Sea Duel See-Duell Duel Duello Sul Mare Bataille Navale (Battleship) | 6 6 6 6 6 | 1980 | TI MP3496-N1 | 4952-56 REV - |
10 | Alien Raiders 4176 | Space Blitz Blitz Blitz Blitz Blitz | 7 7 7 7 7 | 1981 | TI M34009-N1 | 4952-79 REV B |
11 | Cosmic Hunter 4177 | N/A | N/A | 1981 | TI M34007-N1 | 4952-79 REV B |
12 | N/A | Super Block Buster Super Blockbuster 611497800 Super Block Buster Super Casse Brique (Super Brick Breaker) 611497801 | 8 8 8 8 | 1982 | TI M34047-N2LL | 7924952D02 Rev B |
13 | Barrage | ? | ? | Unreleased (supposed to be released in 1982) | ? |
In popular culture
[edit]The Microvision was featured in Friday the 13th Part 2 (1981).[5]
Reviews
[edit]- 1980 Games 100 in Games[16]
- 1981 Games 100 in Games
See also
[edit]References
[edit]- ^ Sfetcu, Nicolae (2014-05-04). Game Preview. Nicolae Sfetcu.
- ^ a b c "Cribsheet No. 15: Milton Bradley's Microvision". Next Generation. No. 40. Imagine Media. April 1998. p. 25.
- ^ a b Vinciguerra, Robert (November 25, 2007). "Milton Bradley Microvision: The World's First Handheld Game Console". The Rev. Rob Times. Archived from the original on January 25, 2013. Retrieved 26 December 2013.
- ^ www.lookingtodraw.com, MICHAEL J. BARNES, ILTD DESIGN SERVICES. "PC Timeline. The Freeman PC Museum... Largest Collection of Vintage Computers On The Web". Retrieved 22 January 2017.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ^ a b "Milton Bradley Microvision – Pop Culture Maven". 2014-02-19. Retrieved 2020-07-21.
- ^ a b "Microvision by Milton Bradley – The Video Game Kraken". Retrieved 2020-08-06.
- ^ Donald Melanson, March 3, 2006, A Brief History of Handheld Video Games Engadget
- ^ Barder, Ollie (December 31, 2016). "New Interview With Satoru Okada Delves Into The Hidden History Behind Nintendo's Gaming Handhelds". Forbes.com. Retrieved 22 January 2017.
- ^ a b "Milton Bradley Microvision (U.S.)". Handheld Museum. Archived from the original on 2018-08-21. Retrieved 2018-12-02.
the console itself is nothing more than controls, LCD panel and a controller chip for the LCD panel. Each cartridge contains the microprocessor, which happens to have a small amount of ROM space on it that MB loaded the game code onto.
- ^ "MB Microvision Handheld Games Console". Simply Eighties. Archived from the original on 2017-07-10. Retrieved 2018-12-02.
In fact, it was the cartridge itself that contained the CPU, and just to confuse everyone two different ones were used.
- ^ a b "Milton Bradley Microvison (1979 – 1981)". Museum of Obsolete Media. 27 September 2013. Archived from the original on 2018-11-21. Retrieved 2018-12-07.
The main unit was little more than a housing for the display, batteries, switches and controller, while the brains of each game was a combined microprocessor/memory chip inside the clip-on cartridge.
- ^ Brown, Jason (2022-01-14). "12 Best Microvision Games Of 2022". RetroDodo. Retrieved 2022-02-13.
- ^ Lester, John "Gamester81" (2013-04-28). "History of Consoles-Microvision (1979)". Gamester81.com. Retrieved 2022-02-13.
{{cite web}}
: CS1 maint: numeric names: authors list (link) - ^ Robinson, John Elder (25 September 2007). "Chapter 21: Being Young Executives". Look Me in the Eye. Three Rivers Press. pp. 197-203. ISBN 978-0-307-39598-6.
- ^ "Dan B's Atari Microvision Tech Page".
- ^ "GAMES Magazine #20". November 1980.